Navigation mit Access Keys

SLF HomeMountain ecosystemsProtection forestProtective capacity of forests against snow avalanches

Quantifying and improving the protective capacity of forests against snow avalanches

Main menu


Snow avalanches threaten human settlements and transportation lines in many mountainous regions throughout the world. Mountain forests reduce the probability of avalanche initiation and therefore are a valuable protective measure. However, the protective capacity of mountain forests varies with stand structure and can be influenced by different management strategies. If a forest has a protective function against avalanches, then expensive alternatives (i.e., snow supporting structures) do not have to be considered.


Future changes in climate and land-use are likely to change forest cover and composition, and thus have an impact on avalanche hazard mitigation. For an optimized management of mountain forest ecosystem to reduce disaster risk it is thus crucial (1) to increase the knowledge about forest-avalanche interactions, (2) to better integrate forest effects in existing avalanche dynamics models and risk analysis, and (3) to deduce adapted strategies for the management of different mountain forest ecosystems of the world.

This research is framed within the Ecosystems Protecting Infrastructure and Communities (EPIC) project and is funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU).


Resarch locations

This research is conducted in three mountain regions of the world:

1. Chilean Andes: Valle de las Trancas, located in the region of Nevados de Chillán (36°55'S, 71°27'W) will represent our pilot study area in Chile. Other study areas may be included in the near future in areas where (i) avalanches are an issue for local communities and (ii) forest-avalanche interactions exist. For example, at Cajón del Maipo (33°46'S, 70°15'W), near Santiago de Chile, snow avalanches appear to reach local communities, which must be confirmed in-situ to include this location as one of our study areas.

2. Nepal: two potential study areas are foreseen. Firstly, the Annapurna Conservation Area, where snow avalanches have occurred in the past with an impact on forests, community infrastructure and livelihoods is considered. This conservation area was launched in 1986 and is both the largest and the first protected area in Nepal. It covers an area of 7,629 km2 and is home to over 100,000 residents. The other potential study area is the newly (2010) formed Gaurishankar Conservation Area, which covers 2,179 km2 and hosts over 56,000 residents.

3. Swiss Alps: most previous work on forest-avalanche interactions and avalanche modeling has been conducted in this region. Locations with well documented avalanche occurrence in the Swiss Alps will therefore allow to better calibrate and validate the models of avalanche dynamics and forest-avalanche interactions in different regions worldwide.