
Lave torrentielle
Menu principal
Les plus grosses laves torrentielles dans les Alpes ont entraîné et déposé dans les vallées jusqu’à un demi-million de mètres cubes de matériaux. Le transport d’une telle quantité nécessiterait plus de 40 000 camions. Il n’est pas rare de retrouver des quantités qui pourraient être placées dans un millier de camions.
Notre logiciel RAMMS::DEBRISFLOW calcule ces phénomènes torrentiels et évalue l’incidence des mesures de protection. La simulation calcule les trajets possibles des écoulements et des jaillissements d’une lave torrentielle en fonction des précipitations et du terrain, y compris la déclivité.
Pendant leur écoulement, les laves torrentielles augmentent de volume par rapport à leur masse d’origine. Ceci a une influence sur la vitesse et la distance de coulée, le détachement de la lave torrentielle et, enfin, la force qui agit sur les objets tels que ouvrages de protection, ponts ou bâtiments lorsque la lave torrentielle dévale. RAMMS est en mesure de simuler ce comportement d’érosion d’une lave torrentielle.
Les nouvelles connaissances acquises dans le cadre de la recherche, des mesures sur le terrain, des expérimentations et des essais en laboratoire contribuent sans cesse à l’amélioration du module.
Pour en savoir plus
Contact
Dr. Perry Bartelt
chef de groupe, senior scientist
bartelt(at)slfto make life hard for spam bots.ch
+41 81 417 02 51+41 81 417 02 51
Marc Christen
system spécialiste - RAMMS Software
Services et produits
Portail des dangers naturels
RAMMS - Rapid Mass Movement Simulation
Liens
Avec le jeu « MurGame », basé sur le logiciel RAMMS du SLF, vous pouvez simuler des laves torrentielles et construire des structures de protection.
(Nouvelles) publications
Murgänge und Hangmuren gefährden in gebirgigen Regionen Personen und Sachwerte. Im Rahmen des integralen Risikomanagements können neben der Berücksichtigung von Naturgefahren in der Raumplanung bauliche, organisatorische oder ingenieurbiologische Schutzmassnahmen getroffen werden.
This thesis is an outcome of a joint research project between Geobrugg AG and the Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), in order to investigate the use of flexible ring net barriers to retard or stop debris flows.
Results of a research project aimed at developing a dimensioning concept for flexible debris flow protection systems. The concept involves specially focused research combining laboratory tests, fully instrumented field installations and the corresponding numerical simulations.
Dieser Bericht fasst die Resultate eines Forschungsprojekts zusammen, das zum Ziel hatte, ein Konzept für flexible Murgangbarrieren zu entwickeln. Das Konzept beinhaltet Laborversuche, voll instrumentierte Feldinstallationen und die entsprechenden numerischen Simulationen.
Lucas, D.; Fankhauser, K.; Maurer, H.; McArdell, B.; Grob, R.; Herzog, R.; Bleiker, E.; Springman, S.M., 2020: Slope stability of a scree slope based on integrated characterisation and monitoring. Water, 12, 2: 447 (38 pp.). doi: 10.3390/w12020447
Zimmermann, F.; McArdell, B.W.; Rickli, C.; Scheidl, C., 2020: 2D runout modelling of hillslope debris flows, based on well-documented events in Switzerland. Geosciences, 10, 2: 70 (17 pp.). doi: 10.3390/geosciences10020070
De Haas, T.; McArdell, B.W.; Conway, S.J.; McElwaine, J.N.; Kleinhans, M.G.; Salese, F.; Grindrod, P.M., 2019: Initiation and flow conditions of contemporary flows in Martian gullies. Journal of Geophysical Research: Planets, 124, 8: 2246-2271. doi: 10.1029/2018JE005899
Marchetti, E.; Walter, F.; Barfucci, G.; Genco, R.; Wenner, M.; Ripepe, M.; McArdell, B.; Price, C., 2019: Infrasound array analysis of debris flow activity and implication for early warning. Journal of Geophysical Research F: Earth Surface, 124, 2: 567-587. doi: 10.1029/2018JF004785
Hürlimann, M.; Coviello, V.; Bel, C.; Guo, X.; Berti, M.; Graf, C.; Hübl, J.; Miyata, S.; Smith, J.B.; Yin, H., 2019: Debris-flow monitoring and warning: review and examples. Earth-Science Reviews, 199: 102981 (26 pp.). doi: 10.1016/j.earscirev.2019.102981
Uchida, T.; Nishiguchi, Y.; McArdell, B.W.; Satofuka, Y., 2019: Numerical simulation for evaluating the phase-shift of fine sediment in stony debris flows. In: Kean, J.W.; Coe, J.A.; Santi, P.M.; Guillen, B.K. (eds), 2019: Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment. 7th intemational conference on debris-flow hazards mitigation (DFHM7), Golden, USA. 451-458. doi: 10.25676/11124/173185
Densmore, A.L.; De Haas, T.; McArdell, B.; Schuerch, P., 2019: Making sense of avulsions on debris-flow fans. In: Kean, J.W.; Coe, J.A.; Santi, P.M.; Guillen, B.K. (eds), 2019: Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment. 7th intemational conference on debris-flow hazards mitigation (DFHM7), Golden, USA. 637-644. doi: 10.25676/11124/173161
Graf, C.; Christen, M.; McArdell, B.W.; Bartelt, P., 2019: An overview of a decade of applied debris-flow runout modeling in Switzerland: challenges and recommendations. In: Kean, J.W.; Coe, J.A.; Santi, P.M.; Guillen, B.K. (eds), 2019: Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment. 7th intemational conference on debris-flow hazards mitigation (DFHM7), Golden, USA. 685-692.
Hirschberg, J.; McArdell, B.W.; Badoux, A.; Molnar, P., 2019: Analysis of rainfall and runoff for debris flows at the Illgraben catchment, Switzerland. In: Kean, J.W.; Coe, J.A.; Santi, P.M.; Guillen, B.K. (eds), 2019: Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment. 7th intemational conference on debris-flow hazards mitigation (DFHM7), Golden, USA. 693-700.
Scheidl, C.; McArdell, B.; Nagl, G.; Rickenmann, D., 2019: Debris-flow behavior in super- and subcritical conditions. In: Kean, J.W.; Coe, J.A.; Santi, P.M.; Guillen, B.K. (eds), 2019: Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment. 7th intemational conference on debris-flow hazards mitigation (DFHM7), Golden, USA. 437-442. doi: 10.25676/11124/173187
Rickenmann, D.; Karrer, T.; McArdell, B.; Scheidl, C., 2019: Small scale debris-flow experiments on run-up height. In: Kean, J.W.; Coe, J.A.; Santi, P.M.; Guillen, B.K. (eds), 2019: Debris-flow hazards mitigation: mechanics, monitoring, modeling, and assessment. 7th intemational conference on debris-flow hazards mitigation (DFHM7), Golden, USA. 414-420. doi: 10.25676/11124/173191
Frank, F.; Huggel, C.; McArdell, B.W.; Vieli, A., 2019: Landslides and increased debris-flow activity: a systematic comparison of six catchments in Switzerland. Earth Surface Processes and Landforms, 44, 3: 699-712. doi: 10.1002/esp.4524
Wendeler, C.; Volkwein, A.; McArdell, B.W.; Bartelt, P., 2018: Load model for designing flexible steel barriers for debris flow mitigation. Canadian Geotechnical Journal, 99: 893-910. doi: 10.1139/cgj-2016-0157
Schimmel, A.; Hübl, J.; McArdell, B.; Walter, F., 2018: Automatic identification of alpine mass movements by a combination of seismic and infrasound sensors. Sensors, 18, 5: 1658 (19 pp.). doi: 10.3390/s18051658
Rickenmann, D., 2017: Bedload transport measurements with geophones, hydrophones, and underwater microphones (passive acoustic methods). In: Tsutsumi, D.; Laronne, J.B. (eds), 2017: Gravel-bed rivers. Processes and disasters. Chichester, John Wiley & Sons, Ltd.. 185-208. doi: 10.1002/9781118971437.ch7
Walter, F.; Burtin, A.; McArdell, B.W.; Hovius, N.; Weder, B.; Turowski, J.M., 2017: Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland. Natural Hazards and Earth System Sciences, 17, 6: 939-955. doi: 10.5194/nhess-17-939-2017
Frank, F.; McArdell, B.W.; Oggier, N.; Baer, P.; Christen, M.; Vieli, A., 2017: Debris-flow modeling at Meretschibach and Bondasca catchments, Switzerland: sensitivity testing of field-data-based entrainment model. Natural Hazards and Earth System Sciences, 17, 5: 801-815. doi: 10.5194/nhess-17-801-2017
Jacquemart, M.; Meier, L.; Graf, C.; Morsdorf, F., 2017: 3D dynamics of debris flows quantified at sub-second intervals from laser profiles. Natural Hazards, 89, 2: 785-800. doi: 10.1007/s11069-017-2993-1
Baer, P.; Huggel, C.; McArdell, B.W.; Frank, F., 2017: Changing debris flow activity after sudden sediment input: a case study from the Swiss Alps. Geology Today, 33, 6: 216-223. doi: 10.1111/gto.12211
Von Boetticher, A.; Turowski, J.M.; McArdell, B.W.; Rickenmann, D.; Hürlimann, M.; Scheidl, C.; Kirchner, J.W., 2017: DebrisInterMixing-2.3: a finite volume solver for three-dimensional debris-flow simulations with two calibration parameters – part 2: model validation with experiments. Geoscientific Model Development, 10, 11: 3963-3978. doi: 10.5194/gmd-10-3963-2017
Bartelt, P.; McArdell, B.; Graf, C.; Christen, M.; Buser, O., 2016: Dispersive pressure, boundary jerk and configurational changes in debris flows. International Journal of Erosion Control Engineering, 9, 1: 1-6. doi: 10.13101/ijece.9.1
Volkwein, A.; Baumann, R.; Rickli, C.; Wendeler, C., 2015: Standardization for flexible debris retention barriers. In: Lollino, G.; Giordan, D.; Crosta, G.B.; Corominas, J.; Azzam, R.; Wasowski, J.; Sciarra, N. (eds), 2015: Engineering geology for society and territory - volume 2. Landslide processes. Cham, Springer. 193-196. doi: 10.1007/978-3-319-09057-3_25
Schraml, K.; Thomschitz, B.; McArdell, B.; Graf, C.; Hungr, O.; Kaitna, R., 2015: Modeling debris-flow runout pattern on a forested alpine fan with different dynamic simulation models. In: Lollino, G.; Giordan, D.; Crosta, G.B.; Corominas, J.; Azzam, R.; Wasowski, J.; Sciarra, N. (eds), 2015: Engineering geology for society and territory - volume 2. Landslide processes. Cham, Springer. 1673-1676. doi: 10.1007/978-3-319-09057-3_297
Jacquemart, M.; Tobler, D.; Graf, C.; Meier, L., 2015: Advanced debris-flow monitoring and alarm system at Spreitgraben. In: Lollino, G.; Arattano, M.; Rinaldi, M.; Giustolisi, O.; Marechal, J.; Grant, G.E. (eds), 2015: Engineering geology for society and territory - volume 3. River basins, reservoir sedimentation and water resources. Cham, Springer. 59-62. doi: 10.1007/978-3-319-09054-2_12
Wendeler, C.; Volkwein, A., 2015: Laboratory tests for the optimization of mesh size for flexible debris-flow barriers. Natural Hazards and Earth System Sciences, 15, 12: 2597-2604. doi: 10.5194/nhess-15-2597-2015
Stähli, M.; Sättele, M.; Huggel, C.; McArdell, B.W.; Lehmann, P.; Van Herwijnen, A.; Berne, A.; Schleiss, M.; Ferrari, A.; Kos, A.; Or, D.; Springman, S.M., 2015: Monitoring and prediction in early warning systems for rapid mass movements. Natural Hazards and Earth System Sciences, 15, 4: 905-917. doi: 10.5194/nhess-15-905-2015
Schraml, K.; Thomschitz, B.; McArdell, B.W.; Graf, C.; Kaitna, R., 2015: Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Natural Hazards and Earth System Sciences, 15, 7: 1483-1492. doi: 10.5194/nhess-15-1483-2015
Scheidl, C.; McArdell, B.W.; Rickenmann, D., 2015: Debris-flow velocities and superelevation in a curved laboratory channel. Canadian Geotechnical Journal, 52, 3: 305-317. doi: 10.1139/cgj-2014-0081
Sättele, M.; Bründl, M.; Straub, D., 2015: Reliability and effectiveness of early warning systems for natural hazards: concept and application to debris flow warning. Reliability Engineering and System Safety, 142: 192-202. doi: 10.1016/j.ress.2015.05.003
Bebi, P.; Putallaz, J.; Fankhauser, M.; Schmid, U.; Schwitter, R.; Gerber, W., 2015: Die Schutzfunktion in Windwurfflächen. Schweizerische Zeitschrift für Forstwesen, 166, 3: 168-176. doi: 10.3188/szf.2015.0168
Stähli, M.; Graf, C.; Scheidl, C.; Wyss, C.R.; Volkwein, A., 2015: Experimentelle Erkundung von Wildbächen, Murgängen, Hangrutschungen und Steinschlag: aktuelle Beispiele der WSL. Geographica Helvetica, 70, 1: 1-9. doi: 10.5194/gh-70-1-2015
Rheinberger, C.M.; Romang, H.E.; Bründl, M., 2013: Proportional loss functions for debris flow events. Natural Hazards and Earth System Sciences, 13, 8: 2147-2156. doi: 10.5194/nhess-13-2147-2013