Diss. ETH No. 14 684

Water and Solute Release from a Subalpine Snow Cover

A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZÜRICH for the degree of DOCTOR OF NATURAL SCIENCES

> presented by Peter Andreas Waldner Dipl. nat. ETH born on January 8, 1969 of Ziefen BL and Zürich

accepted on recommendation of Prof. Dr. Hannes Flühler, examiner Dr. Martin Schneebeli, co-examiner Dr. Manfred Stähli, co-examiner

2002

Table of Contents

List of	f figures	iv
List of	f tables	vii
Notation Acknowledgement Summary Kurzfassung 1. General Introduction		viii
		X
		xii
		xiv
		1
2 Ob		1
2. UU	Massurement of liquid water content in snow	4
2.1	Hotorogonaity of water and putriant release from	5
2.2	neterogeneity of water and nutrient release from	6
23	Show Interaction between the snow structure and water	0
2.5	flow	7
24	Formation and persistence of snow layers	8
2.T	Tormation and persistence of show layers	0
3. Coi	ntinuous measurements of liquid water content and	0
den	sity in snow using TDR	9
3.1	Abstract	10
3.2	Introduction	11
3.3	Dielectric properties of snow	12
3.4	Conventional Sensors: Spatial variability	13
3.5	Light weight snow TDR sensors for process studies	15
3.6	Long flat band cable sensors	17
3.7	Summary	24
4. Me	lt water and nitrate release from a snow pack on a	
ma	rshy subalpine meadow	25
4.1	Abstract	26
4.2	Introduction	27
4.3	Methods	29
4.4	Results	35
4.5	Discussion	49
4.6	Conclusions	57
4.7	Acknowledgement	59

5. Eff	ect of snow structure on water flow and solute	
transport		
5.1	Abstract	62
5.2	Introduction	63
5.3	Methods	65
5.4	Results	72
5.5	Discussion	84
5.6	Conclusions	88
5.7	Acknowledgement	90
6. Fac	tors governing the formation and persistence of	
lay	ers in a sub-alpine snow pack	91
6.1	Abstract	92
6.2	Introduction	93
6.3	Materials and method	94
6.4	Results	102
6.5	Discussion and conclusions	117
6.6	Acknowledgements	118
7. Synthesis		119
7.1	Liquid water content measurement	121
7.2	Ionic fractionation and ion release	121
7.3	Water flow in bottom layer (flow type III)	123
7.4	Preferential flow paths in snow	124
7.5	Implications	128
References		130
Curriculum vitae		145
Appendix		146

Summary

In temperate and cold regions, a considerable portion of precipitation is stored as snow. In spring, release of chemical trace species from the snow pack in melt water is a significant input to soil, vegetation and surface waters. Accumulation and release of water and ions in the snow pack is complex. Preferential flow paths extensively configure the spatial distribution of the water and ion release from snow. Several authors reported from laboratory experiments that ionic concentrations in melt water were influenced by ion redistribution at the grain scale during previous snow metamorphism.

This thesis aimed at determining timing, heterogeneity, and regulating mechanisms of water and ion release from a melting snow cover in a subalpine environment. The main objectives were (i) to quantify the spatial and temporal variability of the ion and water release of a melting subalpine snow pack, (ii) to identify and characterize the most important processes leading to this variability, and (iii) to investigate the interaction between snow microstructure and water flow and the persistence of preferential flow paths. Field and laboratory experiments and numerical simulations were conducted.

Non-destructive continuous measurement of the liquid water content with a time domain reflectometry (TDR) system provided valuable insight into flow processes in snow. We adapted the evaluation routine of the system by defining the thresholds of the used algorithm relative to the maximum of the TDR signal. This improved the flexibility of the algorithm and automatically yielded water content between dry and saturated conditions.

On a marshy meadow in the Northern Swiss subalpine area, we took water samples at the snow pack bottom with a set-up consisting of 32 melt water samplers having a ground section of 0.4×0.7 m. The observed spatial and temporal heterogeneity of the melt release was enormous and more complex than expected. Ion redistribution at grain scale had no major effect on the nitrate concentrations in melt water, which we explained by the fact that the nitrate concentrations were in the range of its solubility in ice.

The formation of preferential flow paths was identified to be the main cause for the heterogeneity of the water and ion release from the subalpine field snow pack. In slight local depressions, vertical flow paths seemed to be more frequent when the snow pack was strongly layered. More than 90% of the melt and rain water was routed to less than 50% of the horizontal area. Furthermore, the role of saturated flow at the snow pack base was larger than expected. The height of this saturated zone exceeded the capillary rise in snow and the water, that was in contact with the soil, contained dissolved minerals.

In cold laboratory, we investigated water and dye tracer movement through microstructurally different snow pack horizons. Naturally rounded snow of varying grain size was sieved into rectangular bins and infrared lamps were used to induced surface melt. The capillary barrier effect at the boundary between a fine over a coarse textured layer on matrix flow was confirmed. In contrast to matrix flow, preferential flow appeared as well-defined flow fingers that advance from 0.1 to 1 cm s⁻¹. During a melt phase, the advancing flow fingers enlarged and were only partially time invariant. This is in line with the field experiment, where the preferential flow paths gradually and sporadically translocated.

The development of the snow pack monitored in the field was simulated using two 1-dimensional physically based numerical models. Snow depth and water equivalent were simulated with high accuracy, whereas the model was not able to reproduce the observed strong layering of the snow pack. A sensitivity analyses was carried out: The model disregards capillary barrier effects, preferential flow, and lateral water flow, which is a major limitation for a more realistic simulation of the snow pack layering.

In conclusion, the distribution of plant nutrients contained in a snow cover onto a field during melt is heterogeneous and varilar59056cy0 pl