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Abstract. Predicting the timing and size of natural snow
avalanches is crucial for local and regional decision mak-
ers but remains one of the major challenges in avalanche
forecasting. So far, forecasts are generally made by human
experts interpreting a variety of data and drawing on their
knowledge and experience. Using avalanche data from the
Swiss Alps and one-dimensional physics-based snowpack
simulations for virtual slopes, we developed a model pre-
dicting the probability of dry-snow avalanches occurring in
the region surrounding automated weather stations based on
the output of a recently developed instability model. This
new avalanche day predictor was compared with benchmark
models related to the amount of new snow. Evaluation on an
independent data set demonstrated the importance of snow
stratigraphy for natural avalanche release, as the avalanche
day predictor outperformed the benchmark model based on
the 3 d sum of new snow height (F1 scores: 0.71 and 0.65,
respectively). The averaged predictions of both models re-
sulted in the best performance (F1 score: 0.75). In a second
step, we derived functions describing the probability for cer-
tain avalanche size classes. Using the 24 h new snow height
as proxy of avalanche failure depth yielded the best estima-
tor of typical (median) observed avalanche size, while the
depth of the deepest weak layer, detected using the instabil-
ity model, provided the better indicator regarding the largest
observed avalanche size. Validation of the avalanche size es-
timator on an independent data set of avalanche observations
confirmed these findings. Furthermore, comparing the pre-
dictions of the avalanche day predictors and avalanche size
estimators with a 21-year data set of re-analysed regional
avalanche danger levels showed increasing probabilities for
natural avalanches and increasing avalanche size with in-

creasing danger level. We conclude that these models may be
valuable tools to support forecasting the occurrence of natu-
ral dry-snow avalanches.

1 Introduction

Forecasting natural snow avalanches is highly relevant in ar-
eas where avalanches may threaten people or infrastructure.
Erroneous forecasts may cause costs as missed alarms may
result in damage to people or infrastructure, and as false
alarms may lead to economic loss due to unnecessary clo-
sures or evacuations. Therefore, accurately predicting the oc-
currence of natural avalanches is crucial, though it is still
a major challenge in avalanche forecasting. Currently, fore-
casts are made by human experts drawing on their knowledge
and experience. To forecast natural dry-snow avalanches, the
(expected) amount of new snow is one of the main param-
eters. Accumulated sums of precipitation were found to be
among the most important explanatory variables in several
studies relating observed avalanche activity to meteorologi-
cal drivers and observed snowpack parameters (e.g. Ancey
et al., 2004; Kronholm et al., 2006; Hendrikx et al., 2014).
However, new snow height alone is not sufficient for fore-
casting; instead, other contributing factors, in particular the
presence of potential weak layers in the snowpack, have to be
taken into account (e.g. Stoffel et al., 1998; Schirmer et al.,
2009; Schweizer et al., 2009).

While physical snowpack models, such as CROCUS (Brun
et al., 1989, 1992; Vionnet et al., 2012) or SNOWPACK
(Lehning et al., 1999; Bartelt and Lehning, 2002; Lehning
et al., 2002a, b), are commonly used to model new snow
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amounts for operational avalanche forecasting, they have so
far only rarely been used to assess snowpack instability based
on simulated snow stratigraphy in an operational context
(Morin et al., 2020). Some recent studies included informa-
tion on simulated snow stratigraphy as explanatory variables
to predict natural avalanche activity with statistical or ma-
chine learning models (Viallon-Galinier et al., 2023; Reuter
et al., 2022). Viallon-Galinier et al. (2023) found a random
forest (RF) classifier that included mechanically based sta-
bility indices to outperform a classifier that only relied on
meteorological and bulk snow parameters simulated with
CROCUS. However, the precision of the improved classi-
fier was low (3.4 %), which was attributed to the scarcity of
avalanche events and the potential misclassification of non-
avalanche days in the observations. The uncertainty inher-
ent in avalanche observation data generally poses a major
challenge when developing avalanche prediction models. Er-
rors in visual observations arise from the difficulty of retro-
spectively determining the exact date of an avalanche release
and from missed avalanche events due to limited visibility
during periods of heavy snowfall, when the probability of
natural avalanche events is particularly high. Avalanche ac-
tivity data recorded by detection systems (e.g. Heck et al.,
2019; Mayer et al., 2020) is a promising alternative but com-
monly covers only very limited areas (a few square kilome-
tres), much smaller than typical forecasting regions (order
of 100 km2). Moreover, due to the relatively new technolo-
gies of automated avalanche detection, avalanche catalogues
only cover a few winter seasons (van Herwijnen et al., 2016).
For instance, Reuter et al. (2022) trained and tested a model
using automatically detected avalanches using only 31 non-
avalanche days and 15 avalanche days.

An alternative approach to develop snow instability mod-
els is to use a target variable based on surrogate data
that implicitly contain information on avalanche activity,
e.g. avalanche danger levels or stability test results from field
observations. According to the definitions of the European
avalanche danger levels (EAWS, 2023), natural avalanches
are expected at levels 4 (high) and 5 (very high) but unlikely
at the two lowest levels (1 (low) and 2 (moderate)). In addi-
tion, avalanche size increases with increasing danger level
(e.g. EAWS, 2022; Schweizer et al., 2020a; Techel et al.,
2020). Pérez-Guillén et al. (2022) recently developed an
RF classifier that uses meteorological parameters and snow
cover properties simulated with SNOWPACK to predict dan-
ger levels. Another recent RF classifier was trained on stabil-
ity tests related to human-triggered avalanches (Mayer et al.,
2022). This model, which we refer to as the instability model
herein, assesses the probability that a simulated SNOW-
PACK profile is potentially unstable considering human trig-
gering. As the instability model was trained using stability
tests related to human-triggered avalanches, its applicability
to predict natural avalanches is not self-evident. However, its
input features describing the potential weak layer (e.g. grain
size) and the overlying slab (e.g. the ratio of the mean slab

density and the mean slab grain size) are important variables
not only with respect to human triggering but also regard-
ing natural release. Comparing the classification of SNOW-
PACK profiles simulated using measurements from more
than 100 automated weather stations (AWSs) in Switzerland
with a large number of avalanche forecasts showed plausi-
ble results: the instability model yielded low probabilities of
instability at the lower danger levels (i.e. level 1 (low) or
2 (moderate)) or in aspects and at elevations not indicated
as critical in the forecast, whereas high probabilities were
predicted for the upper danger levels (i.e. level 3 (consider-
able) or 4 (high)) (Techel et al., 2022). The instability model
was tested in an operational setting by the national avalanche
warning service in Switzerland during the 2021/2022 winter
season, with promising results.

The objective of this study was to investigate whether the
instability model developed by Mayer et al. (2022) applied
to one-dimensional SNOWPACK simulations can be used
to predict natural dry-snow avalanches at the regional scale.
More specifically, we aim to derive a transformation of the
current model output (probability of instability) to an in-
dex describing the probability of observing natural dry-snow
avalanches in the surroundings of an AWS. For this pur-
pose, we use avalanche observations recorded for avalanche
forecasting in Switzerland during three winter seasons and
SNOWPACK simulations from automated weather stations
located at the elevations of potential avalanche starting zones.
To reduce the uncertainty associated with visual avalanche
observations, we apply a filter using observations from the
wider surroundings. Furthermore, as a secondary objective,
we explore whether we can estimate avalanche size based on
one-dimensional SNOWPACK simulations. The avalanche
day predictor and the avalanche size estimator are both val-
idated using 21 years of re-analysed regional danger level
data and an independent data set of avalanche observations
(5 years) from the region of Davos in the eastern Swiss Alps.
With these validation data, we also demonstrate the useful-
ness of predictions based on the instability model compared
with the use of simple indicators of snow instability as the
amount of new snow during the previous 24 or 72 h.

2 Data

We used different data sets to train and validate the avalanche
day predictor and the avalanche size estimator (Fig. 1). To
develop the avalanche day predictor, we used avalanche ob-
servations (data set AV1; Sect. 2.1.1) combined with SNOW-
PACK simulations and predictions of the instability model
described in Sect. 2.2. The avalanche size estimator was
trained using only avalanche observations (data set AV2;
Sect. 2.1.2). For validation of both models, we used a third
independent data set of avalanche observations (data set
AV3; Sect. 2.1.3), as well as a data set of quality-checked
regional avalanche danger levels (DL; Sect. 2.3).
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Figure 1. Several data sets were used to develop and validate the functions describing the probability of natural avalanche occurrence and
avalanche size. The data are described in the sections indicated.

2.1 Avalanche data

2.1.1 Swiss Alps, observed avalanches (data set AV1,
2019/2020 to 2021/2022, 3 years)

To develop the avalanche day predictor and test the avalanche
size estimator, we used avalanche observations collected for
the purpose of avalanche forecasting in Switzerland. During
the winter season, generally from early December until late
April, about 80 observers report avalanches in their region on
a daily basis. These observations are highly relevant for the
day-to-day verification of the avalanche forecast, particularly
at the higher danger levels. Reported avalanche properties in-
clude the approximate location and the date of the avalanche
release, the elevation and the slope aspect of the release area,
the release type (i.e. natural or human-triggered), whether it
was a dry- or a wet-snow avalanche (SLF, 2020), and a size
estimate according to the European avalanche size classifica-
tion ranging from 1 (small) to 5 (extremely large) (EAWS,
2021, see Table 1). In many cases, the release date and time,
and further parameters, are estimated, as the actual avalanche
release was not observed and access to the starting zone of an
avalanche is generally not possible. Other avalanche charac-
teristics, such as the type (i.e. slab or loose snow avalanche),
the length and width or the failure depth, are also reported
sometimes.

For this study, we only considered natural dry-snow
avalanches that were recorded between 1 December and
30 April in the three winter seasons 2019/2020, 2020/2021
and 2021/2022 in the Swiss Alps. In total, 12 940 avalanches
were reported. Even though the operational avalanche
database also contains avalanche observations prior to 2019,

Table 1. Avalanche size classification (according to SLF, 2020;
EAWS, 2021) and the corresponding weight, w, used to calculate
the avalanche activity index (AAI).

Size (s) Label Volume (m3) Weight (w)

1 Small 100 0.01
2 Medium 1000 0.1
3 Large 10 000 1
4 Very large 100 000 10
5 Extremely large > 100000 10

the recording standards were different and did not allow us
to unambiguously identify natural dry-snow avalanches.

2.1.2 Swiss Alps, observed avalanches (data set AV2,
1992/1993 to 2021/2022, 30 years)

The data set described in Sect. 2.1.1 only rarely contained
an estimate of avalanche failure depth, which is equal to
slab thickness. To derive a relationship between the failure
depth of avalanches and avalanche size, we extracted all dry-
snow avalanches that contained an estimation of avalanche
size and the (mean estimated) failure depth from the oper-
ational database. Between November 1992 and June 2022
(30 years), this resulted in 5912 dry-snow avalanches.

2.1.3 Davos (eastern Swiss Alps), observed avalanches
(data set AV3, 2014/2015 to 2018/2019, 5 years)

For validation, we used avalanches mapped in the region of
Davos in the eastern Swiss Alps (e.g. described by Hafner
et al., 2021). These data were used in several studies (e.g.
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Figure 2. Map of Switzerland showing the location of the automated weather stations (dots). The colouring indicates the number of avalanche
days (AvDs) per station, summed up over all aspects and over the three winter seasons 2019/2020 to 2021/2022. Stations in the Davos–Zuoz
area, which had N ≥ 13 AvDs per station, were combined in a subset “Davos–Zuoz” (marked with white circles), and all other stations
as “elsewhere”. For illustration purposes, the major rivers and lakes are shown in blue and the elevation in grey (digital elevation model –
source: Federal Office of Topography swisstopo).

Schweizer et al., 2020a; Mayer et al., 2022) and are publicly
available (Schweizer et al., 2020b). From an updated version
of this data set, we extracted all natural dry-snow avalanches
that released in the five winters 2014/2015 to 2018/2019,
which resulted in 1995 avalanches.

2.2 Snowpack and instability simulations

We applied the operational setup of the SNOWPACK model
(Lehning et al., 2002b) used for avalanche forecasting in
Switzerland. The simulations were driven with meteorologi-
cal data from AWSs located in flat terrain at the elevation of
potential avalanche starting zones throughout the Swiss Alps
(Lehning et al., 1999; Morin et al., 2020). An overview of
the spatial distribution of these AWSs is provided in Fig. 2.
The measured meteorological data were pre-processed with
MeteoIO (Bavay and Egger, 2014) to filter out potential mea-
surement errors and fill measurement gaps using temporal
interpolation or spatial interpolation with neighbouring sta-
tions. To reduce errors related to the meteorological input
data in the validation (Sect. 4.4.1) of the models developed in
this study, we also produced SNOWPACK simulations using
a quality-checked data set of meteorological measurements
from the AWS Weissfluhjoch (2536 m a.s.l.) (WSL Institute
for Snow and Avalanche Research SLF, 2015).

In addition to the simulations on flat terrain, forced with
measured snow depths, simulations were also performed for
four “virtual” slope orientations (north, east, south and west)

with a slope angle of 38◦, including snow redistribution from
windward to leeward slopes as described in Lehning et al.
(2000) and Lehning and Fierz (2008). Model output was
available for up to 124 AWSs. We used SNOWPACK sim-
ulations for the four “virtual” slope orientations from the
21 winters 2001/2002 to 2021/2022.

To assess snow instability from simulated snow stratigra-
phy, we applied the instability model to the simulated snow
profile at 12:00 LT on the day of interest, as described in
Techel et al. (2022). The instability model requires six in-
put features describing the simulated snow layer of interest
and the overlying slab. The output probability Punstable that a
snow layer is unstable is determined by the fraction of trees
in the ensemble of 400 classification trees that classify the
layer as potentially unstable. Applying the instability model
to every snow layer of a given snow profile allows computing
the following properties (see also Fig. 3):

– Critical weak layer properties: the critical weak layer
relevant for natural avalanche release is defined as the
layer with the highest probability of instability, i.e. the
layer where Punstable =max(Punstable). In case of ties,
we selected the layer deepest in the snowpack. For
each snow profile, we then extracted the following three
layer properties: max(Punstable), which we refer to as
Pcrit; the depth z below the snow surface in centime-
tres (zcrit); and the grain type (gtcrit). We grouped grain
types into three classes considering the primary grain
type: (i) persistent grain types (pg), including depth
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Figure 3. Example of a simulated snow profile showing the hand
hardness profile, the grain type of the simulated layers (colouring of
the layers) and the probability of instability Punstable (black line).
The critical weak layer is defined as the layer where Punstable is
maximal. Hand hardness (F: fist, 4F: four fingers, 1F: one finger, P:
pencil and K: knife) and grain type (PP: precipitation particles, DF:
decomposing and fragmented precipitation particles, RG: rounded
grains, FC: faceted crystals, DH: depth hoar, SH: surface hoar and
MF: melt forms) were coded after Fierz et al. (2009). The dashed
vertical line displays the threshold of Punstable = 0.77 discriminat-
ing between stable and potentially unstable layers derived by Mayer
et al. (2022). The depth of precipitation particles and the deepest
weak layer, i.e. the deepest layer exceeding the instability thresh-
old, are indicated.

hoar, buried surface hoar, facets and rounding facets;
(ii) precipitation particles (pp), including decomposing
and fragmented precipitation particles; and (iii) other
grain types (other), including rounded grain types, melt
forms, melt-freeze crusts and ice layers. (See also Fierz
et al., 2009 for the grain type classification.)

– Deepest weak layer properties: in addition to the crit-
ical weak layer, we searched for potential weak layers
deeper in the snowpack. We selected the deepest weak
layer as the deepest layer fulfilling Punstable ≥ 0.77 –
the best-splitting threshold suggested by Mayer et al.
(2022) to distinguish between stable and potentially un-
stable layers. If no such layer existed, the deepest weak
layer was the critical weak layer. For each profile, we
then extracted the probability of instability for the deep-
est weak layer Pdeep, the depth below the snow surface
(zdeep) and the grain type (gtdeep).

The rate of snowfall and the amount of new snow
are known to be important indicators of natural dry-snow
avalanche activity, also called direct-action avalanches (e.g.

Conway and Wilbour, 1999), and also for the potential size of
avalanches (e.g. Schweizer et al., 2009). Therefore, we also
calculated:

– Height of new snow in 24 h (HN1d).

– Height of the 3 d sum of new snow (HN3d), calculated
as the sum of three consecutive HN1d values .

– Thickness of precipitation particle layers: the thickness
of layers in the simulated profile, where the primary
grain type was either new snow or partially decompos-
ing and fragmented precipitation particles (zpp).

Conventionally, the height of new snow is measured in
the flat field. Consistent with this definition, the new snow
amounts provided by SNOWPACK are therefore for the flat
field as well, regardless of whether it is a simulation in the
flat or on a virtual slope. However, we also considered the
thickness of precipitation particle layers, zpp, which should
capture the amount of recently fallen snow including snow
transport by wind, since we used the SNOWPACK version
including snow redistribution by wind. All other parameters
depend on aspect since they were selected from the virtual
slope simulations where, for instance, energy input and snow
accumulation vary depending on aspect.

Lastly, we also extracted the minimum of the natural sta-
bility index sn38, which is implemented in SNOWPACK.
Sn38 describes for each snow layer the ratio of the shear
strength of the layer to the shear stress exerted by the overly-
ing slab (Jamieson and Johnston, 1998; Lehning et al., 2004).

2.3 Re-analysed regional avalanche danger level
(data set DL)

To validate model predictions, we used a data set of re-
analysed regional danger levels. This data set is a subset
of the forecast regional avalanche danger levels published
by the national avalanche warning service in Switzerland.
The data set only contains cases for which the forecast dan-
ger level was either validated or corrected (about 5 % of the
cases) after considering multiple pieces of evidence, as de-
scribed by Pérez-Guillén et al. (2022). An updated version
of this data set is publicly available (Techel, 2023). The data
set consists of 36 582 re-analysed regional danger levels for
specified warning regions, the smallest spatial units used in
the Swiss avalanche forecast, for the forecast seasons from
winter 2001/2002 to 2021/2022. In addition, the critical as-
pects and elevation range where the danger level applies,
and the validity date of the forecast, are indicated. The dan-
ger level is assigned according to the five-level European
Avalanche Danger Scale (EAWS, 2022). The frequency of
the danger levels in this data set is: 1 (low) 35 %, 2 (mod-
erate) 29 %, 3 (considerable) 29 %, 4 (high) 7 % and 5 (very
high) 0.3 %. In this re-analysed subset, the proportions for
4 (high) and 5 (very high) are slightly larger than in the orig-
inal forecasts.
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3 Methods

In a first step, we developed an avalanche day predictor
(Sect. 3.1) addressing the following question: For a given
Pcrit value, what is the probability of natural avalanches oc-
curring in a specific aspect and elevation band in the sur-
roundings of an AWS? We compared this approach with
benchmark models based on conventional indicators related
to the amount of new snow. Second, we built an avalanche
size estimator (Sect. 3.2) with the objective to extract in-
formation on the expected typical or largest avalanche size
based on (simulated) weak layer depth or the height of new
snow.

3.1 Avalanche day predictor

3.1.1 Definition of avalanche days and non-avalanche
days

To differentiate days with natural dry-snow avalanche activ-
ity (avalanche days, AvDs) from days without any avalanche
activity (non-avalanche days, nAvDs), we relied on data set
AV1 (Sect. 2.1.1). The two main challenges in using these
data relate to reliably labelling days with no avalanches and
the correct estimation of the release date. For instance, even
in areas that are regularly observed, the absence of reported
avalanches may be due to poor visibility (i.e. continuous
snowfall) rather than a true absence of recent avalanches,
making it challenging to accurately determine situations
without natural avalanches. Moreover, the accuracy of the
release date depends on observation frequency in an area,
on visibility conditions and the overall observation quality.
To enhance the reliability of the avalanche day labels, we
therefore applied the approach developed by Hendrick et al.
(2023) to extract AvDs and nAvDs from the avalanche obser-
vations, with a specific focus on dry-snow avalanches.

We define the aspect-specific avalanche day index (Y ) in
the surroundings of an automated weather station and within
an elevation band ±250 m of the station elevation for four
slope orientations (aspect: north, east, south and west) as

Y =



0 if AAI(Swiss Alps)= 0 for all
elevations and aspects

1 if AAI
(
250km2)

≥ 0.01&
AAI

(
1000km2)

≥ 0.04
AAI

(
5000km2)

≥ 0.2&gap check
NaN otherwise

, (1)

with NaN not a number. The avalanche activity index AAI
refers to the weighted sum of the reported avalanches within
the respective elevation band, aspect and area (Schweizer
et al., 2003). The size-dependent weights w are defined as
in Table 1. The gap check requirement is AAI (5000 km2) >

AAI (1000km2) and AAI (1000km2) > AAI (250km2), en-
suring avalanche activity increases for larger areas and is not
only local. As described in Hendrick et al. (2023), consider-

ing observation areas of increasing size allows to cross-check
the absence or occurrence of avalanches.

This definition separates days with widespread avalanche
activity (AvD; Y = 1) of a certain magnitude from days with
absolutely no avalanches (nAvD; Y = 0), and excludes days
with either only local avalanche activity (close to the sta-
tion) or widespread activity but without any avalanches in
the vicinity of the station. Regarding model development, it
should be noted that we thus trained and tested our model
using rather extreme cases, which are, however, comparably
reliable in terms of the quality of the label.

By applying Eq. (1) to the training data set AV1, we
obtained aspect-specific time series containing AvDs and
nAvDs for three winter seasons for each station. As it was
still difficult to distinguish between cases classified as nAvD,
which were solely due to missing observations rather than
actual nAvD, we only retained the winter seasons with at
least one AvD for a given station–aspect combination. In
the end, the data set contained about 10 times more nAvDs
(N = 8511) than AvDs (N = 872). Overall, AvDs had a me-
dian of two avalanches (interquartile range IQR: 2–7) in
the aspect and elevation of the snowpack simulation within
an area of 250 km2 surrounding the station. Two or more
avalanches were recorded on 559 of the 872 AvDs. The me-
dian AAI on AvD was 1 (IQR 0.3–3.6), the typical avalanche
(median avalanche size) was of size 2 (IQR 2–3) and the typ-
ical largest avalanche (median) was of size 3 (IQR 2–3).

3.1.2 Model development and evaluation

To develop the avalanche day model, we tested a set of pre-
dictor variables, including HN1d, HN3d, zpp, Pcrit and sn38,
in two different modelling approaches, namely a threshold-
based binary classification model and continuous regression
functions describing the probability for an AvD.

In a first step, we investigated the performance of each
predictor variable in discriminating between AvDs and
nAvDs from the training data set (i.e. data set AV1 and
the corresponding SNOWPACK simulations) using a sim-
ple threshold-based binary classification model. To find the
best threshold, “thr”, for each classification model, we op-
timized the F1 score, defined as the harmonic mean of the
precision, also termed positive predictive value (PPV), and
the true-positive rate (TPR; see Table 2 for the definitions of
these performance measures). This approach favours a bal-
anced trade-off between the TPR, which is the probability of
detecting an AvD, and the PPV, the rate of correct positive
predictions.

To examine the robustness of the threshold values and
the resulting classification performance, we split the train-
ing data into the following subsets, each of which was tested
with the complementary data not used for deriving “thr”:

– Hydrological year: each hydrological year had its own
pattern of snowpack evolution and avalanche hazard
characteristics.
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Table 2. Confusion matrix defining the possible combinations of
observed and predicted labels (upper part) and definition of result-
ing performance measures true-positive rate (TPR), positive predic-
tive value (PPV), true-negative rate (TNR) and F1 score (F1; lower
part).

Observation
1 (AvD) 0 (nAvD)

Prediction
1 TP FP
0 FN TN

TPR =
TP

TP+FN
PPV =

TP
TP+FP

TNR =
TN

TN+FP
F1 = 2 PPV·TPR

PPV+TPR

– Grain type characteristics of the critical weak layer:
we distinguished between layers composed of persistent
grain types and precipitation particles. There were only
a few AvD cases for other grain types; therefore, we did
not train on this subset.

– Region: the AvDs are not equally distributed over the
Swiss Alps (see Fig. 2). Ten of the 11 stations with the
most AvDs are all located in the eastern Swiss Alps,
in an area we refer to as Davos–Zuoz. This region is
characterized by an inner-alpine climate. To ascertain
that the threshold was independent of this spatial bias
in the data, we compared a subset Davos–Zuoz (white-
circled points in Fig. 2) to elsewhere.

In a second step, we derived avalanche day predictors
P(AvD) describing the probability for an AvD as continu-
ous functions of a single input feature, i.e.

P(AvD)(x)= f (x), with x = HN1d,HN3d,zpp or Pcrit. (2)

To estimate the relationship between the binary avalanche in-
dex data Y ∈ {0,1} and the predictor variables, we applied re-
gression analysis with four-parameter sigmoidal (S-shaped)
functions (see Table A1). The functions were fit on the com-
plete training data set using non-linear least squares with pa-
rameter constraints to ensure that modelled probabilities did
not exceed 1. For each input feature, we defined the best-
fitting function by minimizing the Brier score (BS; Wilks,
2011, p. 331), which is the mean squared prediction error:

BS=
1
N

∑
i

(Yi −pi)
2, (3)

where N is the number of the prediction–observation sam-
ples denoted with index i, pi the predicted probability – here
f (xi) – and Yi the observed outcome (1 for AvD and 0 for
nAvD). A perfect model would thus result in a Brier score
equal to zero. As the data set AV1 contained about 10 times
more nAvDs than AvDs, a model with a strong tendency to

predict nAvDs could result in low Brier scores simply be-
cause the evaluation on the minority subset of AvDs has
lower weight compared with the subset of nAvDs. To indi-
cate how well the minority class of AvDs was captured by the
model, we therefore additionally calculated the Brier score
on the subset of AvDs only (BS+).

3.2 Avalanche size estimator

To estimate avalanche size for a given failure layer depth, we
used data set AV2 (Sect. 2.1.2) to relate avalanche size to ob-
served failure depth (zobs) using logistic regression functions
of the form

P(S ≥ s)(zobs)=
1

1+ e−(β0+β1·zobs)
, (4)

where P(S ≥ s) is the probability that avalanches greater
than or equal to size s (s ∈ [2,3,4,5]; Table 1) were observed
given the observed failure depth (zobs).

The P(S ≥ s) functions were derived using observed data
only, as SNOWPACK simulations were not available for the
locations of the avalanche release areas. To analyse the per-
formance of the size indicators combined with the depth pa-
rameters extracted from SNOWPACK, we estimated proba-
bilities for different avalanche sizes on the AvDs from the
training data set (Sect. 3.1.1) using the simulated depth pa-
rameters z (HN1d, HN3d, zpp, zcrit and zdeep, described in
Sect. 2.2) as proxies for the potential failure depth. The re-
sulting estimated probabilities for different avalanche sizes
(s ∈ [3,4]) were then compared with the observed median
and maximum avalanche sizes on the respective AvD using
the Brier score (Eq. 3) with the probabilities pi = P(S ≥
s)(zi) and the observed outcome Yi equal to 1 if an avalanche
of size ≥ s was observed and 0 otherwise. To evaluate how
well the avalanche size estimator captures rare events, we
also calculated the Brier score BS+ on the subset of positive
observed outcomes, i.e. the data points that had an observed
avalanche of size≥ s.

3.3 Validation and application

To evaluate the performance of the avalanche day predictors
(P(AvD)) and the avalanche size estimators (P(S ≥ s)), we
used two independent data sets:

1. We used the observations of natural dry-snow
avalanches in the region of Davos (data set AV3;
Sect. 2.1.3) to determine AvDs and nAvDs as described
in Sect. 3.1.1. We labelled a day as a nAvD if there were
no dry-snow avalanches in the region of Davos and the
two surrounding regions (1000 and 5000 km2), which
is in line with the definition described in Sect. 3.1.1.
A day was labelled as an aspect-specific AvD if the
AAI in the region of Davos was larger than 0.01 for
the respective aspect and within an elevation band of
±250 m around the AWS Weissfluhjoch (2536 m a.s.l.)
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and if at least one natural dry-snow avalanche was
observed within each of the two surrounding regions
(1000 and 5000 km2), regardless of aspect and ele-
vation. The definition of an AvD was thus slightly
adapted compared with Eq. (1) due to the lack of
consistent information on aspect and elevation of the
observed avalanches within the two larger surrounding
regions. Thus, AvD labels in the validation data set
are somewhat less reliable compared with the orig-
inal definition. The resulting data set consisted of
273 avalanche days and 984 non-avalanche days during
the five winter seasons 2014/2015 to 2018/2019. For
each of these 1257 d, we calculated aspect-specific
values of P(AvD) and P(S ≥ s) using SNOWPACK
virtual slope simulations driven with quality-checked
data from the AWS Weissfluhjoch (see Sect. 2.2). With
the adapted definition of AvD (no consideration of
aspect for the two surrounding areas not covered by
the avalanche observations in the region of Davos), we
obtained some more AvDs than in the other data sets.
This follows from the fact that an east-facing avalanche
in the region of Davos will count towards an AvD if
there are other avalanches in the surrounding areas with
unknown aspect.

2. We compared the re-analysed forecast regional
avalanche danger levels (DL, Sect. 2.3) to values of
P(AvD) and P(S ≥ s) computed for the stations and
virtual slopes that matched the elevation and the critical
aspects of the respective danger level data point. As for
the other analyses, we used the snowpack simulations at
12:00 LT on the day of interest. For the winter seasons
2019–2020 to 2021–2022, we removed all data points
used to develop the P(AvD)-model and which had a
simulated snow depth< 30 cm.

4 Results

4.1 Avalanche days vs. non-avalanche days

Avalanche days were generally associated with new snow
(HN1d= 25 cm, HN3d= 59 cm, p < 0.001; see row=All
in Table 3). In contrast, nAvDs were typically characterized
by no new snow (HN1d= 0, HN3d= 0, median values and
p < 0.001). Consequently, the median thickness of the lay-
ers including precipitation particles varied in a similar way
(AvD: zpp = 73 cm; nAvD: zpp = 0 cm). The simulated criti-
cal weak layer was at a median depth of 75 cm on AvDs and
22 cm on nAvDs. The simulated critical weak layer had a
significantly higher probability of instability on AvDs com-
pared to nAvDs (Pcrit = 0.92 vs. Pcrit = 0.33, respectively;
p ≤ 0.001) and it was more often composed of persistent
grain types (77 % vs. 47 % of cases, respectively; p ≤ 0.001).
As indicated in Table 3, these values varied between subsets.
For instance, the median depth of the most critical weak layer

was 44 cm on AvDs in 2020 and 91 cm in 2021, while on
nAvDs the values were 4 and 65 cm, respectively. Similarly,
on AvDs, the depth of the weak layer was 88 cm when the
critical weak layer consisted of persistent grains (pg) com-
pared with 47 cm for precipitation particles (pp).

At least one potentially unstable layer was detected in
84 % of the AvDs, and in only 2 % of the nAvDs. More-
over, in 7 % of the profiles, there was at least one other po-
tentially unstable layer below the critical weak layer. These
cases were rare on nAvDs (1 % of the profiles), but quite fre-
quent on AvDs (66 %). The median difference in the depth
between the critical and the deepest potentially unstable layer
(zdeep−zcrit) was 14 cm (IQR: 4–44 cm). On AvDs, these lay-
ers were 15 cm deeper (IQR: 5–49 cm) compared with only
4 cm (IQR: 2–26 cm) on nAvDs. If such a deeper weak layer
existed, it primarily consisted of persistent grains (90 %).

4.2 Predicting avalanche days and non-avalanche days

All explored variables (HN1d, HN3d, zpp and Pcrit) showed
highly significant differences between avalanche days and
non-avalanche days as demonstrated in the previous section.
In the following, we will first explore their potential for a bi-
nary classification of AvDs and nAvDs, and then derive con-
tinuous functions describing the probability for an AvD.

The optimal thresholds (“thr”) to distinguish between
nAvD and AvD for the seven subsets varied when cross-
validating the model. For instance, threshold values ranged
from 9 to 17 cm for the 24 h amount of new snow HN1d
(median 12 cm) or from 22 to 47 cm for zpp (median 32 cm)
(Table A2). Applying these thresholds to the test sets, i.e. the
data not used for training, showed that all four variables per-
formed similarly well in correctly predicting nAvDs (TNR ∈
[0.96,1]; Fig. 4). In contrast, larger variations were observed
in the TPR, i.e. the proportion of correctly predicted AvDs.
TPR was highest for HN3d (TPR= 0.81) and Pcrit (TPR=
0.79). The precision, i.e. the proportion of predicted AvDs
that also were observed as AvDs, was highest for the two
new snow parameters (PPV(HN1d)= 0.84, PPV(HN3d)=
0.83). However, these two parameters also showed a greater
variation in PPV between subsets compared with Pcrit, which
had a more consistent performance though a slightly lower
PPV of 0.80. Overall, in terms of a balanced performance
maximizing the F1 score, both HN3d and Pcrit had similar
values (median F1 score of 0.80 in cross-validation). All ap-
proaches by far outperformed the natural stability index sn38
(median cross-validated F1 score of 0.24). Due to the lim-
ited discriminatory power of sn38, this variable was not con-
sidered further in the subsequent development of continuous
models.

Analysing differences between the subsets in more detail
also provided interesting insights. For instance, the optimal
balanced zpp threshold to differentiate AvD from nAvD was
40 cm when the critical weak layer consisted of precipitation
particles (pp) compared with 22 cm for persistent grains (pg);
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Figure 4. Performance statistics for avalanche day predictors (bi-
nary classification). Shown are the cross-validated TPR and PPV
values for the seven subsets numbered in Table 3. The whiskers
mark the respective minimum and maximum values, and the larger
circles display the median values of these performance measures
on the seven subsets. In addition, for each parameter, the median
threshold, TNR and F1 score are indicated.

it was 47 cm in the region “elsewhere” and 22 cm in the inner-
alpine region of Davos–Zuoz, where persistent weak layers
are more frequently observed (e.g. Schweizer et al., 2021,
see Table 3). Similar results were also obtained for the two
new snow variables, thus confirming what is known from a
process-based point of view: when persistent weak layers are
present, less new snow is needed to trigger natural avalanches
(Stoffel et al., 1998; Schweizer et al., 2009).

The coefficients for the best-fitting sigmoidal functions
f yielding the avalanche day estimators P(AvD)(x)= f (x)
with x given by HN1d, HN3d, zpp or Pcrit are shown in Ta-
ble A3. The Brier score (BS) was lowest for HN3d (BS=
0.021 and BS+ = 0.156; Table A3). Exemplarily, Fig. 5
shows the P(AvD) functions for Pcrit and HN3d. The val-
ues of P(AvD) predicted with these two variables corre-
lated strongly (Pearson correlation coefficient r = 0.82). The
thresholds where the functions reached P(AvD)= 0.5 (Ta-
ble A3) were slightly higher compared with the thresholds of
the binary classification models described above (Table A2).
The F1 scores resulting from these thresholds deviated from
the optimal F1 scores obtained with the simple classifiers by
less than 1 %. Therefore, we only evaluated the performance
of the continuous avalanche day predictor functions in the
validation (Sect. 4.4).

Finally, we explored the performance when averaging
the P(AvD) predictions based on HN3d and Pcrit. Tak-
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Figure 5. Probability that a day is an avalanche day (P(AvD)) as a function of (a) Pcrit and (b) HN3d for the data subsets shown in Table 3.
The subsets are binned with bin-size being 0.1 in (a) and 10 cm in (b). The best-fitting function describing all data is shown in black.

Figure 6. Panel (a) shows distribution of mean estimated failure depth (zobs) for 5912 avalanches as a function of avalanche size. Panel (b)
shows visualization of logistic regression functions describing the probability that the avalanche size S is larger than a certain size s (P(S ≥
s)) as a function of zobs. The coefficients for these functions are shown in Table A4.

ing the mean of both models resulted in slightly better
performance compared with the best-performing approach
P(AvD)(HN3d): the BS decreased from 0.021 to 0.019,
while the BS on the subset of AvDs, BS+, decreased
from 0.156 to 0.144. Translating the mean probability into a
binary classification resulted in a TPR of 0.81, a TNR of 0.99
and a high PPV of 0.95. Thus, the combined model detected
more than 80 % of the avalanche days correctly and had the
overall highest F1 score of 0.87.

4.3 Estimating avalanche size

In data set AV3, containing 5912 observed avalanches
(Sect. 2.1.2), the recorded failure depth zobs correlated with
avalanche size (rs = 0.45 and p < 0.001; Fig. 6a). The me-
dian failure depth increased from 30 cm for size 1 avalanches
to 100 cm for size 5 avalanches. While there is consider-
able overlap, the distributions of zobs were significantly dif-
ferent between pairs of consecutive avalanche size classes
(Wilcoxon rank-sum test: p < 0.001). Based on this data
set, we derived logistic functions P(S ≥ s)(zobs) to estimate
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Table 4. Brier scores for predicting the median or the largest avalanche for all avalanche days (AvD) with ≥ 2 avalanches (N = 559) using
as input different predictor variables. BS+ evaluates only the subset of data points where the avalanche size of interest was indeed observed
(median/maximum S ≥ 3: N = 175/N = 436; median/maximum S ≥ 4: N = 31/N = 140). The best-performing approach is highlighted in
bold.

Median avalanche size Largest avalanche size
S ≥ s HN1d HN3d zcrit zdeep zpp HN1d HN3d zcrit zdeep zpp

BS S ≥ 3 0.21 0.28 0.32 0.37 0.28 0.39 0.27 0.24 0.21 0.25
S ≥ 4 0.05 0.06 0.07 0.09 0.05 0.23 0.21 0.19 0.19 0.19

BS+ S ≥ 3 0.45 0.27 0.19 0.13 0.20 0.47 0.28 0.21 0.16 0.24
S ≥ 4 0.86 0.73 0.49 0.36 0.55 0.90 0.79 0.65 0.53 0.71

avalanche size from zobs (Fig. 6b; the respective coefficients
are provided in Table A4).

Comparing P(S ≥ 3) and P(S ≥ 4) with the observa-
tions from the data set AV1 on AvDs with at least two
recorded avalanches, we obtained the lowest BS if the me-
dian avalanche size was estimated with HN1d as a proxy for
the failure depth. For the largest recorded avalanche, on the
other hand, zdeep was the best predictor (Table 4). Consider-
ing only the subsets of data points where the avalanche size
of interest was indeed observed (BS+ in Table 4), i.e. for the
175 cases S ≥ 3 when an avalanche of size 3 or larger was ob-
served, zdeep had the lowest Brier scores for both the median
and the largest avalanche size. Thus, zdeep outperforms the
variables related to the amount of new snow in terms of cap-
turing minority events, even for the median avalanche size,
but has a tendency to predict avalanches larger than observed.

4.4 Validation

4.4.1 Predicting natural avalanche activity in the
region of Davos

While the predictive power of the continuous models
P(AvD)(Pcrit) and P(AvD)(HN3d) was similar when ap-
plied to the training data set AV1 (see Table A3), there were
substantial differences in the performance of these models
on the validation data set AV3 of observed avalanches from
the region of Davos (Sect. 2.1.3), as seen in Fig. 7 and Ta-
ble 5. For both models, the predicted AvD probability was
low for nAvDs (median values 0.03 and 0.01, respectively),
yet for AvDs, the P(AvD) values based on HN3d were
significantly lower (median: 0.55) than the values obtained
with Pcrit (median: 0.95). Using the P(AvD)(HN3d) model
and the default classification threshold of 0.5, 149 of the
273 AvDs were correctly predicted (TPR= 0.55) and 77 %
of the 193 predicted AvDs corresponded to actual observed
AvDs (PPV= 0.77; Table 5). The P(AvD)(Pcrit) model, on
the other hand, had a higher probability of detecting AvDs
(TPR= 0.90), while the proportion of predicted AvDs that
matched an observed AvD was lower (PPV= 0.59). In terms
of F1 score, the P(AvD)(Pcrit) model (F1= 0.71) outper-
formed the P(AvD)(HN3d) model (F1= 0.64). When us-

Table 5. Performance statistics of different avalanche day predic-
tors P(AvD) on the independent validation data set (AV3) with ob-
served avalanches from the region of Davos including 273 AvDs
and 984 nAvDs.

Model TPR TNR PPV F1

P(AvD)(HN3d) 0.55 0.96 0.77 0.64
P(AvD)(Pcrit) 0.90 0.83 0.59 0.71
P(AvD)(combi) 0.72 0.95 0.79 0.75

Table 6. Brier scores for predicting the median or the largest
avalanche size for all avalanche days with ≥ 2 avalanches (N =
185) from the validation data set AV3 of the region of Davos using
the predictor variables HN1d and zdeep as input for the P(S ≥ 3)
function. BS+ evaluates only a subset of the data when the condi-
tion is fulfilled (median/maximum S ≥ 3: N = 33/N = 126). The
best-performing approach is highlighted in bold.

Median avalanche size Largest avalanche size
S ≥ s HN1d zdeep HN1d zdeep

BS S ≥ 3 0.15 0.39 0.39 0.23
BS+ S ≥ 3 0.52 0.08 0.55 0.15

ing the averaged probability of both models, an even higher
F1 score of 75 % was obtained. This combined model yielded
the highest precision (PPV= 0.79), but with a TPR of 0.72,
less AvDs were detected than by the P(AvD)(Pcrit) model
alone.

To evaluate the performance of the avalanche size estima-
tors, we compared P(S ≥ 3) values estimated using HN1d
or zdeep with the observed median and maximum avalanche
size on AvDs with at least two observed avalanches. The re-
sulting Brier scores shown in Table 6 are in line with the
performance for data set AV1 (Table 4): the lowest BS for
the estimation of median avalanche size was obtained when
using HN1d, while for the largest observed avalanche zdeep
was again the better predictor. Considering only events when
median avalanches sizes greater than or equal to size 3 were
observed (N = 33), using zdeep again resulted in the lower
error rate BS+.
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Figure 7. Estimated probabilities P(AvD) for avalanche days and non-avalanche days based on the data set of observed avalanches from
the region of Davos using the models based on (a) Pcrit, (b) HN3d and (c) the averaged predictions P(AvD)(combi) of the models based on
Pcrit and HN3d.

4.4.2 Comparison with the regional avalanche danger
level

We compared individual model predictions with the quality-
checked regional avalanche danger level for 21 winter sea-
sons (data set DL; Sect. 2.3) relating the model predictions
to the three factors determining avalanche danger: snowpack
stability, the frequency of snowpack stability and avalanche
size (Techel et al., 2020; EAWS, 2022). After removing data
used for the development and testing of the P(AvD) models,
98 065 data points remained.

First, we consider snowpack stability, for which we con-
sider Pcrit, related to human triggering of avalanches, and
P(AvD)(Pcrit) and P(AvD)(HN3d), related to the occur-
rence of natural avalanches, as suitable proxies. The pro-
portion of simulated profiles, which included a critical weak
layer classified as potentially unstable Pcrit ≥ 0.77, increased
significantly from danger level 1 (low) (0.01) to 2 (moder-
ate) (0.19) to 3 (considerable) (0.61) (Fig. 8a). At the higher
danger levels, the vast majority of the simulated critical weak
layers were classified as potentially unstable (4 (high): 0.81
and 5 (very high): 0.91). The median predicted probabili-
ties for natural avalanches using the avalanche day predic-
tor P(AvD)(Pcrit) were low at danger level 1 (low) (0.01)
and 2 (moderate) (0.02), and increased with increasing dan-
ger level (3 (considerable): 0.56, 4 (high): 0.81 and 5 (very
high): 0.87) (Fig. 8b). At the two lowest danger levels, less
than 13 % of the profiles indicated an AvD, while at the two
highest danger levels, more than 77 % of the data points were
classified as AvD. The benchmark model P(AvD)(HN3d)
showed a similar increase in predicted avalanche probabil-
ities with increasing danger level and differentiated even
more clearly between the two lowest danger levels and the
two highest danger levels (proportions≤ 0.04 and ≥ 0.82,
respectively) (Fig. 8c). For both P(AvD) models, danger
level 3 (considerable) had the largest spread in simulated
avalanche probabilities. With the default threshold of 0.5,

the proportion of data points at danger level 3 (consider-
able) that were classified as AvD by the P(AvD)(Pcrit) and
P(AvD)(HN3d) predictors were 54 % and 43 %, respec-
tively.

Avalanche sizes, estimated using the 24 h new snow height
HN1d, were mostly size 1 (proportions 0.34–0.42) and size 2
(proportions 0.4–0.44) for danger levels 1 (low) to 3 (con-
siderable) (Fig. 9a). At these danger levels, HN1d was 0 cm
in 64 % of the cases, and hence similar size distributions re-
sulted. At 4 (high) and 5 (very high), new snow was recorded
94 % of the time. The most frequently predicted avalanche
size at the upper danger levels was size 2 (proportions 0.47–
0.48), followed by size 3 (0.26–0.38).

The second proxy of failure depth given by the depth of
the simulated deepest weak layer, zdeep, increased continu-
ously with increasing danger level from median values of
29 cm at 1 (low) to 157 cm at 5 (very high) (Fig. 9b). Accord-
ing to Mayer et al. (2022), the instability model detects the
critical weak layer, and hence the depth of the weak layer,
reliably only if the critical weak layer is potentially unsta-
ble. The results presented in Fig. 9b were therefore calcu-
lated from the subset of zdeep values for weak layers rated
as potentially unstable. Based on these values of zdeep, the
most frequently predicted avalanche size was size 2 (pro-
portions 0.45–0.48) at 1 (low) and 2 (moderate), and size 3
(proportions 0.43–0.48) at the three highest danger levels.
While the proportions of size 3 were approximately simi-
lar at the three highest danger levels, the combined propor-
tions of size 4 and size 5 avalanches increased considerably
with increasing danger level from 0.13 at 3 (considerable)
to 0.41 at 5 (very high) (Fig. 9b). Considering zdeep, regard-
less of whether the respective layer was classified as poten-
tially unstable or not, resulted in the following median values
for 1 (low) to 5 (very high): 31, 31, 53, 90 and 154 cm, and,
hence, in approximately similar size distributions as when
considering only zdeep for layers classified as potentially un-
stable.
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Figure 8. Comparison between quality-checked regional danger levels for 21 years (data set DL, N = 98065, entire Swiss Alps; 1 (low),
2 (moderate), 3 (considerable), 4 (high) and 5 (very high)) and simulated snow instability in terms of (a) the probability of instability of the
critical weak layer Pcrit, (b) the probability of an AvD provided by the avalanche day predictor P(AvD)(Pcrit) and (c) the probability of an
AvD based on P(AvD)(HN3d), the benchmark model. Model predictions were computed for the stations and virtual slopes that matched the
elevation and the critical aspects of the respective danger level data point. The dashed horizontal line represents the best-splitting threshold
to distinguish between (a) stable and potentially unstable profiles (0.77; Mayer et al., 2022), and (b, c) between AvDs and nAvDs. The
respective proportions above and below this threshold are indicated for each danger level.

Figure 9. Comparison of quality-checked regional danger levels for 21 years (data set DL, N = 98065, entire Swiss Alps; 1 (low), 2 (moder-
ate), 3 (considerable), 4 (high) and 5 (very high)) with simulated avalanche size distributions relying on the avalanche size estimators based
on (a) HN1d and (b) zdeep. For each danger level, the respective estimated proportions are shown for each avalanche size (coloured bars).
Median values of (a) HN1d and (b) zdeep are indicated at the top of the bars for each danger level.

Lastly, we explore predictions expected to describe the fre-
quency distribution of snowpack stability. Applying the in-
stability model and the avalanche day predictor to spatially
distributed snowpack simulations may yield frequency dis-
tributions of snowpack stability with respect to human trig-
gering and natural release, respectively. Spatially distributed
simulations of snow stratigraphy can be obtained either with
high-resolution output of numerical weather prediction mod-
els (e.g. Vionnet et al., 2012; Bellaire and Jamieson, 2013b;
Horton et al., 2015) or precipitation input scaled according
to terrain properties (e.g. Reuter et al., 2016; Richter et al.,
2021). While the demonstration of such an approach was be-
yond the scope of this study, here we compare the frequency
of locations indicating natural avalanche activity based on the
mean of P(AvD)(Pcrit) and P(AvD)(HN3d) using posterior
knowledge to aggregate AWSs from regions with the same

danger level to estimate a frequency distribution of snow-
pack stability by the proportion of AWSs indicating natu-
ral avalanche occurrence (P(AvD)(combi)≥ 0.5). Similarly,
we calculated the mean approximated failure depth zdeep per
day and region with the same danger level. Results sug-
gest that avalanche probability and zdeep, the estimator best
correlating with the largest avalanche size, increased non-
linearly with danger level. As can already be expected based
on Fig. 8b and c, the largest spread in conditions can be noted
at danger level 3 (considerable), where the frequency of loca-
tions for which natural avalanches are predicted spanned al-
most the entire range of possible values (see shape of orange
density contours in Fig. 10). In contrast, at 2 (moderate), fre-
quency values were either low (median P(AvD)(combi)=
0.05) or zdeep was comparably small (median zdeep = 30 cm),
while at 4 (high), both the frequency of locations with natural
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Figure 10. Proportion of predictions with P(AvD)(combi)≥ 0.5
and mean depth of the deepest weak layer zdeep per day, and dan-
ger level. Shown are the respective median values (labels). Contour
lines indicate the two-dimensional density distributions for 2 (mod-
erate), 3 (considerable) and 4 (high). The respective outermost con-
tour line represents the (0, 0.1] percentile interval and the innermost
contour line the (0.9, 1.0] percentile interval. Not shown are density
estimates for 1 (low), as only few cases with a proportion≥ 0.01
existed, and for 5 (very high), as only the four data points shown
existed.

avalanches predicted and zdeep were comparably high (me-
dian P(AvD)(combi)= 0.88 and zdeep = 75 cm).

5 Discussion

We developed an avalanche day predictor P(AvD)(Pcrit)

describing the probability for natural dry-snow avalanches
in the surroundings of an AWS for a given slope as-
pect based on simulated snow stratigraphy. We compared
the performance of this index with benchmark models re-
lying on the amount of new snow. The combination of
P(AvD)(Pcrit) with a model based on the 3 d sum of new
snow height, P(AvD)(HN3d), yielded the overall best per-
formance (Sects. 4.2 and 4.4.1). In a second step, we derived
an avalanche size estimator based on the relationship be-
tween the reported failure depth of avalanches and avalanche
size, providing the probability of observing avalanches of a
certain size using different approximations of potential fail-
ure depth. The depth of the deepest weak layer, zdeep, in-
dicated by the instability model, was a better indicator of
maximum avalanche size than modelled new snow amounts
(Sects. 4.3 and 4.4.1). In the following, we will discuss
the performance and limitations of the avalanche day pre-
dictors (P(AvD)) (Sect. 5.2) and avalanche size estimators
(P(S ≥ s)).

5.1 Data reliability

To develop the avalanche day predictor, we created a robust
binary target variable (AvD versus nAvD) imposing restric-
tions on the observed avalanche activity in the vicinity of
the AWS (Eq. 1), ensuring a high reliability of the labelling.
With this approach, the target variable included rather ex-
treme cases of widespread activity versus no activity at all,
which should be taken into account in model interpretation.
Due to the necessary adaptation of the AvD / nAvD definition
in the Davos validation data set, described in Sect. 3.3, the re-
liability of the avalanche day labels is lower as the definition
is relaxed. This also shows in the ratio AvD / nAvD, which
ranged from 6 % to 15 % in the training data set, while for the
Davos validation set it was 27 %. In conclusion, the adapted
definition leads to a higher proportion of AvDs, which seems
responsible for the lower performance.

As the exact timing of avalanche release was not included
in the data sets of observed avalanches, the explanatory
variables were extracted from the snowpack and instability
model simulations at fixed time steps (12:00 LT). This intro-
duced uncertainty in the explanatory variables of both the
training and validation data sets. With avalanche data sets
from remote detection systems, providing the exact release
time, this uncertainty would be removed. However, so far
such data sets only cover short time periods and are very lo-
cal in scope (e.g. van Herwijnen et al., 2016; Heck et al.,
2019; Mayer et al., 2020; Reuter et al., 2022), whereas the
training data set used in this study included avalanches from
the entire Swiss Alps observed over three winter seasons.

5.2 Predicting avalanche days

In a first step, we analysed the predictive power of the ex-
planatory variables to distinguish between AvDs and nAvDs
using different subsets of the training data set (AV1). An
optimized threshold-based classification resulted in a rea-
sonably high performance (cross-validated F1 score: 0.80)
of Pcrit and clearly outperformed the conventional natural
stability index sn38 (cross-validated F1 score: 0.24). While
sn38 seems well suited to model natural avalanche activity
from a physical point of view, the parameterization of this
simple criterion within SNOWPACK has some weaknesses.
Indeed, the shear stress can be simply calculated from the
load and thus only inherits the errors from estimating pre-
cipitation mass based on measured snow depths, yet shear
strength is a rather complex microstructural parameter. The
current SNOWPACK parameterization of shear strength is
based on density and grain type (Jamieson and Johnston,
2001), which may not be sufficient to capture the influence of
microstructure as also pointed out by Richter et al. (2020). In
particular, the evolution of the SNOWPACK shear strength
over time only depends on density if grain type does not
change. The poor performance of sn38 is in line with other
studies (Jamieson et al., 2007; Reuter et al., 2022). For in-

Nat. Hazards Earth Syst. Sci., 23, 3445–3465, 2023 https://doi.org/10.5194/nhess-23-3445-2023



S. Mayer et al.: Prediction of natural dry-snow avalanche activity 3459

stance, Jamieson et al. (2007) analysed sn38 based on field
measurements and concluded that critical values of stability
indices are less useful than their trends, a result confirmed by
Reuter et al. (2022) who showed that using time derivatives
of sn38 has a higher predictive power. In contrast, the 3 d
sum of new snow (HN3d), recognized as an important indi-
cator of avalanche activity in past studies (Ancey et al., 2004;
Schweizer et al., 2009), yielded a classification performance
(cross-validated F1 score: 0.80) similar to that obtained with
Pcrit. Interestingly, the thickness of layers including precip-
itation particles, zpp, resulted in a slightly lower classifica-
tion performance (cross-validated F1 score: 0.76), although it
presumably captures the complete snowfall event, in contrast
to HN3d. Potentially, using the mass of recent slab layers,
which is more directly related to the load on the weak layer,
may lead to better results than the depth of these layers.

Evaluating continuous one-dimensional sigmoidal
P(AvD) functions for the four considered input variables
(HN1d, HN3d, zpp and Pcrit) on the training data (AV1)
resulted in negligible differences in F1 scores (≤ 1 %)
compared with the F1-optimized threshold-based classi-
fication. The best performance in terms of F1 and Brier
scores was obtained by taking the average probability
from P(AvD)(Pcrit) and P(AvD)(HN3d), which was also
confirmed by the validation on the independent data set from
the region of Davos (data set AV3; F1= 0.75). With this data
set (AV3), the performance of the P(AvD)(HN3d) model
in terms of predicting AvDs was rather low (TPR= 0.55).
A possible explanation is the more frequent formation of
persistent weak layers in the region of Davos due to its
relatively dry, inner-alpine snow climate, compared with the
mean snow climate in the Swiss Alps. If weak layers are
present within or at the snow surface, avalanches can release
with smaller amounts of new snow (e.g. Schweizer et al.,
2009; Schneebeli et al., 1998), which was also illustrated
by the differences in optimal thresholds for the subsets
from the training data (Sect. 4.1). The combination of
P(AvD)(HN3d) with P(AvD)(Pcrit) presents an alternative
to using snow-climate-specific thresholds, as the Pcrit
variable captures the presence of weak layers.

Most of the recently developed snow instability models
(Viallon-Galinier et al., 2023; Pérez-Guillén et al., 2022;
Hendrick et al., 2023; Sielenou et al., 2021) are based on sta-
tistical methods which account for non-linear, complex re-
lationships between target and explanatory variables. Here,
we chose a rather simple approach based on one-dimensional
sigmoidal functions which cannot account for interactions
between explanatory variables but do allow for a simple in-
terpretation of model output. Nevertheless, it should be noted
that Pcrit itself is based on the output of a random forest
model, which renders the interpretation of P(AvD)(Pcrit)

difficult with respect to the original input parameters of
the instability model. For a discussion of the influence of
these input parameters on the direct output of the instability

model, the layer-specific probability of instability, Punstable,
see Mayer et al. (2022).

For a model to be considered useful, it has to provide more
information than can be obtained from basic prior informa-
tion (Honts and Schweinle, 2009), for instance, when sim-
ply assuming the base rate of avalanche days as the constant
probability for an avalanche day. Thus, the potential benefits
of a threshold-based classification can also be explored us-
ing the concept of information gain (Honts and Schweinle,
2009). Applied to our context, information gain is defined as
the difference between the base rate probability of avalanche
days and the posterior probability (or the positive predictive
value or precision; Honts and Schweinle, 2009). As shown
in Table 5 for the avalanche observations in the region of
Davos (data set AV3), particularly combining the models
P(AvD)(Pcrit) and P(AvD)(HN3d) provided a clear infor-
mation gain (PPV≥ 0.76) compared with the base rate of
avalanche days in this data set (BR= 0.22). While the new
snow model P(AvD)(HN3d) had a similar PPV, the combi-
nation of the two approaches resulted in a comparably bal-
anced proportion of correctly detected AvDs and nAvDs.

5.3 Estimating avalanche size

Avalanche size is classified according to the destructive po-
tential of the avalanche (e.g. EAWS, 2019), which is strongly
influenced by the volume and mass of the snow in motion.
Thus, avalanche size depends on the failure depth and the
extent of the slab which released, the snow entrained in the
avalanche path and also on the terrain itself (e.g. Bartelt et al.,
2017). Of these factors, the one-dimensional snowpack sim-
ulations in combination with the instability model only pro-
vide information on the failure depth.

We estimated avalanche size as a function of various prox-
ies of failure depth (HN1d, HN3d, zpp and zdeep). The corre-
lation between size and failure depth of observed avalanches
was demonstrated here (Fig. 6) and in previous studies
(van Herwijnen and Jamieson, 2007; Bellaire and Jamieson,
2013a). The overall best indicator of the largest avalanche
size in terms of Brier scores was obtained with the avalanche
size estimator based on the simulated depth of the deepest
weak layer, zdeep. This suggests that information on snow
stratigraphy provides important additional information on
avalanche size compared with using only indicators related to
the amount of new snow. The size estimator based on zdeep,
however, overestimated the occurrence of large avalanches.
This might result from the above-noted oversimplification of
the size estimator with one single input parameter, but also
from the quality of the observed avalanche size distributions
which represent a single, and often rather small, sample (me-
dian of two avalanches on avalanche days) from the poten-
tial avalanches on a given day. Moreover, there may be a re-
porting bias towards reporting larger avalanches (Schweizer
et al., 2020a; Techel et al., 2020). In addition, and as recently
shown by Hafner et al. (2023), considerable uncertainty re-
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Figure 11. Comparison of modelled instability with recent studies analysing observed or forecast indicators of instability with respect to
the five danger levels. Panel (a) shows the proportion of simulated SNOWPACK profiles classified as potentially unstable by the instability
model (dashed line) as compared with the proportion of Rutschblock test results, the proportion of days when a human-triggered avalanche
was observed and the proportion of observations reporting danger signs. Panel (b) shows the proportion of profiles that indicated a natural
avalanche day based on the combined avalanche predictor P(AvD)(combi)≥ 0.5 as compared with observed and expected avalanche oc-
currence. Comparison data sets are abbreviated as follows and refer to the following studies: S20 (Schweizer et al., 2020a), S21 (Schweizer
et al., 2021), T20 (Techel et al., 2020), T22 (Techel et al., 2022) and H21 (Hutter et al., 2021).

lated to individual avalanche size estimates may exist. We
cannot account for any of these factors in our analysis. In-
terestingly, Bellaire and Jamieson (2013a) also used a func-
tional fit on the observed relation between avalanche size
and failure depth to estimate avalanche size from a simulated
proxy of failure depth. However, a comparison between our
avalanche size estimator and this previous approach is not
yet possible, as Bellaire and Jamieson (2013a) only indirectly
validated simulated avalanche size as part of a classification
tree for the prediction of danger levels.

5.4 Comparison with regional avalanche danger levels

The three key factors that characterize the avalanche danger
levels are snowpack stability, the frequency distribution of
snowpack stability and avalanche size (Techel et al., 2020;
EAWS, 2022). The models developed allow, for the first time,
the use of a fully data- and model-driven approach to es-
timate these key factors of regional avalanche danger. We
demonstrated that with increasing danger level, the proba-
bility for natural avalanches estimated by the avalanche day
predictor P(AvD)(Pcrit) also increased for the stations and
virtual slopes that matched the elevation and the critical as-
pects of the respective danger level (Sect. 4.4.2; Fig. 8). In-
terestingly, the benchmark model P(AvD)(HN3d) separated
danger levels 1 (low) and 2 (moderate) from the upper dan-
ger levels high (4) and very high (5) even more strictly. This
simple model P(AvD)(HN3d) could thus be of particular use
for operational forecasting, especially when only meteoro-
logical variables and no detailed snow stratigraphy simula-

tions are available. In line with these results, the proportion
of AWSs predicting natural avalanche activity in regions with
the same danger level increased from 1 (low) to 4 (high).
Of particular note is that the avalanche day predictors indi-
cated a wide range of conditions for danger level 3 (consid-
erable), suggesting that splitting this danger level into sev-
eral sub-levels as proposed by Techel et al. (2022) may allow
for a better differentiation of avalanche situations. With re-
spect to avalanche size, the predictions of the estimator based
on zdeep showed a reasonable increase in the probability for
large avalanches with increasing danger level, which is con-
sistent with the definition of the danger levels.

Comparing the model-driven predictions of instability re-
lated to human-triggered avalanches with other studies ex-
ploring the relationship between the indicators of instability
characterizing regional avalanche danger and the danger lev-
els showed similar patterns (Fig. 11a). For instance, studies
exploring Rutschblock stability test results, a stability test
indicative of human triggering of avalanches (Föhn, 1987;
Schweizer, 2002), showed that the proportion of test results
classified as very poor or poor increased with increasing dan-
ger level (Schweizer et al., 2021; Techel et al., 2020, 2022).
Similarly, the proportion that at least one human-triggered
avalanche was recorded in the area of observation (Schweizer
et al., 2021) or the proportion of observations indicating
human-triggered whumpfs or shooting cracks (Techel et al.,
2022) increased in a similar manner. A similarly good agree-
ment between model predictions and studies describing the
(expected or observed) occurrence of natural avalanches
is visualized in Fig. 11b. For instance, the proportion of
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P(AvD) predictions and the proportion of days on which
natural avalanches were mentioned in the danger descrip-
tion in the Swiss avalanche forecast (Hutter et al., 2021), or
on which avalanches were observed (in the region of Davos;
Schweizer et al., 2020a), showed low values at 1 (low) and
2 (moderate), and high values at 4 (high) and 5 (very high).

We relied on simulated snowpack stratigraphy for virtual
slopes with a 38◦ incline as used for operational avalanche
forecasting in Switzerland. This simulation setup has been
used operationally for several years, for instance, to assess
snowpack wetting (e.g. using the approach by Mitterer et al.,
2013) or to monitor the presence of persistent weak lay-
ers. More recently, the Swiss avalanche warning service has
been testing machine-learning models predicting wet-snow
avalanche activity (Hendrick et al., 2023), snowpack insta-
bility (Mayer et al., 2022) and the avalanche danger level
(Pérez-Guillén et al., 2022) in a real-time setting. These mod-
els use as input snowpack simulations made for the four vir-
tual slope aspects. As shown by Techel et al. (2022) for the
instability model and the avalanche danger model, and by
Hendrick et al. (2023) for the wet-snow avalanche model,
predictions based on these simulations correlated with the
aspects considered the most avalanche-prone or with signs
of instability or avalanche activity.

Overall, we conclude that fully data- and model-driven
aspect-specific predictions describing the probability of
human-triggered avalanches and the occurrence of natural
avalanches are clearly related to observational data and may
therefore be suitable for estimating snowpack stability at the
regional scale.

6 Conclusions

To investigate whether the instability model based on one-
dimensional SNOWPACK simulations recently developed
by Mayer et al. (2022) can be used to predict natural dry-
snow avalanche activity, we compared model output (Pcrit)
with quality-controlled avalanche observations. We found
that Pcrit is well suited to discriminate between days with
widespread natural avalanche activity and days with no ac-
tivity at all. We then transformed Pcrit into a probability for
natural dry-snow avalanche occurrence in the surroundings
of an AWS using regression analysis. The new avalanche day
predictor P(AvD)(Pcrit) performed well (F1= 0.82), but not
better than a benchmark model P(AvD)(HN3d) based on the
3 d sum of new snow height (F1= 0.85) regarding the clas-
sification of avalanche days and non-avalanche days from
the training data set of observed avalanches from all over
Switzerland (AV1). This suggests that for the occurrence of
natural dry-snow avalanches, snow stratigraphy seems to be
of secondary importance compared with the amount of new
snow. However, model evaluation on an independent data set
from the region of Davos (AV3) (Sect. 4.2) and the analy-
sis of specific subsets of the training data showed that ac-

counting for snow stratigraphy is important when promi-
nent persistent weak layers are present in the snowpack, as
less new snow is required to cause a decrease in stability.
In the classification of avalanche days from the region of
Davos, P(AvD)(Pcrit) outperformed P(AvD)(HN3d) (F1=
0.71 and 0.64, respectively), and the averaged predictions
of both models yielded the overall best performance (F1=
0.75). The performance of this combined model should be
evaluated on further independent data sets to investigate its
applicability to snow climates that were not represented by
the data used in this study.

We also explored whether indicators of avalanche size
can be obtained from one-dimensional SNOWPACK simu-
lations. Our avalanche size estimator, developed using ob-
servations of avalanche size and failure depth, produced the
best results in predicting the largest avalanche size when the
depth of the deepest simulated weak layer (zdeep) was used
as a proxy for failure depth. This demonstrates that includ-
ing information on snow stratigraphy is critical for estimating
avalanche size, compared with relying exclusively on param-
eters based on the amount of new snow.

Lastly, as part of the model validation, we showed that
model predictions (avalanche day and size) were related to
the danger levels. The results were in line with current defi-
nitions of the avalanche danger levels and with previous data-
driven studies, highlighting the models’ potential to support
decision making in regional avalanche forecasting.

The models developed in this study allow for the estima-
tion of two determinants of regional avalanche danger, snow
instability and avalanche size. Applied to one-dimensional
snowpack simulations driven with data from AWSs or nu-
merical weather prediction models, these models can thus
provide valuable support in operational avalanche forecast-
ing.

Appendix A

Table A1. Definition of four-parameter sigmoidal functions f (x)
used for fitting of P(AvD) functions.

Definition

Logistic flog(x;a,b,c,d)= b+
(c−b)

1+ea(x−d)

Modified Gompertz fgom(x;a,b,c,d)= b+ (c− b)
(

1− e−e
a(x−d)

)
Log-logistic fllog(x;a,b,c,d)= b+

(c−b)

1+
(
x
d

)a
Weibull type 1 fwei(x;a,b,c,d)= b+ (c− b)

(
1− e−

(
x
d

)a)
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Table A2. Performance statistics for different avalanche day predictors (binary classification). The best-splitting threshold “thr” is indicated.
A case is classified as AvD if the respective value is ≥ thr, except for sn38 where ≤ thr.

Cross-validation (median [min–max]) Alla

Parameter thr TPR TNR PPV F1 thr TPR TNR F1

HN1d 12 [9–17] cm 0.77 [0.59–0.84] 0.99 [0.97–1] 0.84 [0.57–0.98] 0.73 [0.68–0.83] 12 cm 0.74 0.99 0.80
HN3d 23 [16–37] cm 0.81 [0.62–0.94] 0.98 [0.96–1] 0.83 [0.56–0.98] 0.80 [0.66–0.90] 24 cm 0.83 0.99 0.86
zpp 32 [22–47] cm 0.73 [0.51–0.89] 0.98 [0.96–1] 0.72 [0.63–0.95] 0.76 [0.62–0.89] 31 cm 0.82 0.98 0.82
Pcrit 0.81 [0.74–0.85] 0.79 [0.56–0.93] 0.99 [0.97–1] 0.80 [0.69–0.93] 0.80 [0.62–0.88] 0.81 0.82 0.98 0.82
sn38 1.23 [1.00–1.65] 0.70 [0.31–0.94] 0.66 [0.42–0.82] 0.14 [0.10–0.23] 0.24 [0.15–0.36] 1.0 0.67 0.68 0.28

a The data set “All” was trained and tested on the same data.

Table A3. Coefficients (a−−d) of best-fitting function f (x) describing the probability for an AvD, P(AvD), and corresponding Brier score
(BS), Brier score on positive events (BS+) and F1 score resulting from classification based on threshold (thr) with P(AvD)(thr)= 0.5.
Definitions of the functions f are given in Table A1.

x f a b c d BS BS+ F1 thr

HN1d Modified Gompertz 0.141354 −0.117651 1.00 14.911041 0.027 0.227 0.79 12 cm
HN3d Log-logistic −3.295749 0.006066 1 25.997319 0.021 0.156 0.85 26 cm
zpp Weibull type 1 1.824612 0.004207 0.99 45.379189 0.025 0.172 0.81 37 cm
Pcrit Modified Gompertz 11.688441 0.004838 0.99 0.858463 0.027 0.178 0.82 0.83

Table A4. Coefficients (β0 and β1) of logistic regression functions
P(S ≥ s)(zobs) (Eq. 4) relating avalanche size s to observed failure
depth zobs (see also Fig. 6b).

s β0 β1

2 0.2916 0.0440
3 −1.5254 0.0242
4 −3.6971 0.0196
5 −6.8279 0.0164
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