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Abstract Dry-snow slab avalanches release due to the formation of a crack in a weak layer buried below
cohesive snow slabs, followed by rapid crack propagation. The onset of rapid crack propagation occurs if
stresses at the crack tip in the weak layer overcome its strength. In this study, we use the finite element
method to evaluate the maximum shear stress 𝜏max induced by a preexisting crack in a weak snow layer
allowing for the bending of the overlaying slab. It is shown that 𝜏max increases with increasing crack length,
slab thickness, slab density, weak layer elastic modulus, and slope angle. In contrast, 𝜏max decreases with
increasing elastic modulus of the slab. Assuming a realistic failure envelope, we computed the critical crack
length ac for the onset of crack propagation. The model allows for remote triggering from flat (or low angle)
terrain. Yet it shows that the critical crack length decreases with increasing slope angle.

Plain Language Summary Dry-snow slab avalanches release due to the formation of a crack in
a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. Characterizing
conditions for the onset of crack propagation in snow is a great challenge and has been the subject of
several investigations. Yet there is still no consensus about the nature of the initial failure in the weak layer,
whether it occurs in shear only or if the collapse of the weak layer helps to drive crack propagation. Here,
to investigate this question, we employed a numerical model to study stress concentrations in the weak
layer in the presence of a preexisting crack, allowing the bending of the overlaying slab. We computed the
maximum shear stress close to the crack tip for different system configurations and mechanical properties.
We showed that steeper slopes promote crack propagation as predicted by classical shear models. However,
the collapse of the weak layer is essential for crack propagation from flat terrain and thus remote avalanche
triggering.

1. Introduction

A dry-snow slab avalanche originates due to the initiation of a failure in a weak snow layer buried below
a cohesive slab, followed by the onset of rapid crack propagation within the weak layer (McClung, 1979;
Schweizer et al., 2003; Schweizer, Reuter, van Herwijnen, Richter, & Gaume, 2016). Our understanding of failure
initiation has greatly improved over the last decade, in particular, thanks to laboratory and field experiments
on snow failure (Chandel et al., 2015; Reiweger & Schweizer, 2010). Recently, Reiweger et al. (2015) character-
ized the failure envelope of different types of weak layers under mixed-mode loading. Their work confirmed
that failure initiation in weak snow layers is more likely under shear than compressive stresses. On the other
hand, our knowledge about crack propagation has significantly increased as well due to extensive field work
(Bair et al., 2012; Birkeland et al., 2014; Gauthier & Jamieson, 2008; Schweizer, Reuter, van Herwijnen, & Gaume,
2016; van Herwijnen et al., 2016, 2010) and the development of theoretical and numerical models of defor-
mation and fracture in snow (Chiaia et al., 2008; Gaume et al., 2013, 2014, 2017; Gaume, Chambon, et al., 2015;
Gaume, van Herwijnen, et al., 2015; Heierli et al., 2008; Monti et al., 2016). However, the two most recent and
comprehensive studies that investigated the conditions for the onset of crack propagation led to contrast-
ing results concerning the effect of slope angle. The so-called anticrack model of Heierli et al. (2008) was the
first to explain crack propagation on low-angle terrain. They showed that the critical crack length is almost
independent of slope angle by assuming a rigid weak layer and a slope independent failure criterion. In con-
trast, Gaume et al. (2017) developed the shear collapse model (SCM) and showed that the critical crack length
ac decreased with increasing slope angle by accounting for a more realistic behavior of the weak layer. The
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Figure 1. (a) Model geometry. Black triangles represent the fixed boundary condition. (b) Example of shear stress
distribution for a = 0.3 m, 𝜌 = 250 kg/m3, 𝜓 = 40∘, D = 0.2 m, E = 10 MPa, and Ewl = 1 MPa. The displacement was
multiplied by a factor of 10 to discern slab bending. The total length of the system is L = 2 m, but only half of it is shown.

maximum shear stress 𝜏SCM
max derived by Gaume et al. (2017) based on numerical simulations is as follows:

𝜏SCM
max = 𝜏

(
1 + a

Λ

)
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)2
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where 𝜏 and 𝜎 are the shear and normal stresses acting on the weak layer far from the crack, respectively, a is
the crack length, andΛ is a characteristic length of the system (see below). SCM is also able to explain fractures
on low-angle terrain (𝜏 → 0) and remote triggering of avalanches and provides similar results as the original
shear model (McClung, 1979) for steep terrain (>30∘). However, the analytical expression for the maximum
shear stress in the weak layer based on critical crack length measurements could not directly be evaluated
from the simulations due to the discrete nature of the modeled weak layer. Moreover, van Herwijnen et al.
(2016) recently showed using the finite element method (FEM) that in the anticrack model, the mechanical
energy of the slab is generally underestimated, except for low slope angles.

To address these controversial findings, we employed a quasi-static finite element model of a slab overlaying
a weak layer with a preexisting crack. We computed the shear stress in the weak layer for different snowpack
configurations and mechanical properties of the slab and the weak layer, which are treated as linear elastic
materials. The comparison to strength measurements of the weak layer allowed to evaluate the critical crack
length for the onset of crack propagation.

2. Methods

We used the finite element code Cast3M (Verpeaux et al., 1988). The mass and momentum conservation
equations are solved under the hypotheses of small deformations and quasi-static behavior.

The system considered is a two-dimensional (plane stress conditions) propagation saw test (PST) inclined at
an angle𝜓 , of length L = 2 m (Figure 1). The choice for the system length was based on the recommendations
by Bair et al. (2014) and Gaume, van Herwijnen, et al. (2015) to avoid boundary and finite length effects. The
x axis is in the slope-parallel direction, and the z axis is orthogonal to the slope. The system consists of a slab
of thickness D overlying a weak layer, in which a preexisting crack of length a is assumed. The mesh size is
r = 5 × 10−4 m. We used triangular elements with six Gauss points for the slab and the weak layer (TRI6).

The boundary conditions are as follows: The bottom of the weak layer is fixed and the left and right
slope-normal faces of the slab are free, similar to a PST setup (Gauthier & Jamieson, 2008; Sigrist & Schweizer,
2007).

We compute the maximum shear stress 𝜏max found in the weak layer in the vicinity of the crack tip (Figure 1) for
given snowpack properties, which were varied independently. Note that we do no consider the shear stress
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Figure 2. Maximum shear stress 𝜏max as a function of (a) slab thickness D, (b) slab elastic modulus E, (c) weak layer
elastic modulus Ewl, (d) crack length a, (e) slab density 𝜌, and (f ) slope angle 𝜓 . Symbols: 𝜏FEM

max ; continuous black line:
𝜏mod

max (equation (2); dashed gray line: 𝜏SCM
max (equation (1) (Gaume et al., 2017). System properties (if not varied): a = 0.3 m,

D = 0.2 m, 𝜌 = 250 kg/m3, E = 10 MPa, Ewl = 1 MPa for 𝜓 = 0∘ (full symbols), and 𝜓 = 40∘ (open symbols).

exactly at the crack tip as its value strongly depends on the mesh resolution. We verified that the value of the
maximum shear stress 𝜏max is mesh independent.

3. Results
3.1. Stress Concentration
The maximum shear stress 𝜏max found in the weak layer in the vicinity of the crack tip was evaluated as a
function of snowpack properties (Figure 2). The FEM simulations showed that 𝜏max slightly decreases with
increasing slab thickness D for 𝜓 = 0∘. For a steep slope (𝜓 = 40∘), 𝜏max increases with increasing slab thick-
ness and is about 1 order of magnitude larger than for 𝜓 = 0∘. Furthermore, 𝜏max increases with increasing
crack length a for any value of slope angle. With increasing elastic modulus of the slab E, the maximum shear
stress decreases but increases with increasing weak layer elastic modulus Ewl. As expected, 𝜏max increases
linearly with increasing slab density 𝜌. Finally, 𝜏max increases with increasing slope angle.

To explain the observed trends, we derived an analytical expression for the maximum stress based on FEM
results. Previous work showed that the maximum stress at the crack tip was primarily a function of the normal
stress 𝜎 = 𝜌gD cos𝜓 , the shear stress 𝜏 = 𝜌gD sin𝜓 and the ratios a∕Λ and (a∕Λ)2 (Gaume et al., 2017),
where g is the gravitational acceleration. Here Λ = (E′DDwl∕Gwl)1∕2 is a characteristic length of the system
associated with the elastic mismatch between the slab and the weak layer, E′ = E∕(1− 𝜈2) and with the shear
modulus of the weak layer Gwl = Ewl∕(2(1 + 𝜈)); where 𝜈 is the Poisson’s ratio. Gaume et al. (2017) suggested
that additional terms might improve the accuracy of their analytical model; hence, we fitted the following
analytical expression to FEM results, including a coupled term a2∕(ΛD):

𝜏mod
max = 𝜏

[
1 + 𝛼 a

Λ

]
+ 𝜎

[
𝛽

a
Λ

+ 𝛾 a2

ΛD
+ 𝛿

( a
Λ

)2
]
. (2)

The best fit was obtained for 𝛼 = 0.56, 𝛽 = 0.14, and 𝛾 = 0.21 and 𝛿 = 0.

The modeled maximum shear stress 𝜏mod
max is also shown in Figure 2 as a function of snowpack properties

and in Figure 3 as a function of the FEM maximum shear stress 𝜏FEM
max . A good agreement between analytical

(equation (2)) and FEM values of 𝜏max is found, except for very low values of the slab elastic modulus and/or
very high values of the weak layer elastic modulus where the shear stress is slightly overestimated. In addi-
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Figure 3. Modeled (equation (2)) 𝜏mod
max versus simulated (FEM) 𝜏FEM

max maximum shear stress for all the simulated
configurations shown in Figure 2. Symbols and colors correspond to those used in Figure 2. The dashed line represents
the 1:1 line. FEM = finite element method.

tion, for very short crack lengths (a ≤ 0.1 m) and 𝜓 = 0∘, equation (2) slightly underestimates 𝜏max probably
due to edge effects as 𝜏max tends to 0.

3.2. Condition for the Onset of Crack Propagation
We assume that the onset of crack propagation occurs when the shear stress at the crack tip in the weak layer
reaches the shear strength 𝜏p, that is, when 𝜏max = 𝜏p. When this criterion is met, the crack size corresponds to
the so-called critical crack length ac. The shear strength of persistent weak snow layers (natural and artificially
grown faceted crystals, depth hoar, and surface hoar) was measured in laboratory experiments for different
loading angles and rates (Reiweger & Schweizer, 2010; Reiweger et al., 2015). It was shown in particular that
for realistic values of the normal stress 𝜎, 𝜏p increased with increasing values of 𝜎 (Figure 4, inset). Reiweger et
al. (2015) proposed to relate the shear strength to the normal stress according to a Mohr-Coulomb criterion:

FC1: 𝜏p1
= c1 + 𝜎 tan(𝜙) (3)

with c1 = 170 Pa and 𝜙 = 20∘.

This experimentally based relationship for 𝜏p allows to compute the critical crack length by combining
equations (2) and (3). The critical crack length decreases significantly with increasing slope angle𝜓 (Figure 4),
and the snowpack becomes naturally unstable for 𝜓 > 45∘ (ac = 0, 𝜏 > 𝜏p).

However, Reiweger et al. (2015) and Chandel et al. (2015) showed that the shear strength of weak snow layers
may also decrease for larger values of 𝜎 (closed failure envelope). Hence, the dependence with slope angle
was also tested for two other simple failure criteria represented in Figure 4 (inset), one in which the shear
strength 𝜏p is independent of the normal stress 𝜎 and one for which 𝜏p decreases with increasing 𝜎:

FC2: 𝜏p2
= c2, (4)

FC3: 𝜏p3
= c3 − 𝜎 tan(𝜙), (5)

with c2 = 600 Pa and c3 = 1,050 Pa.

For all failure criteria, the simulated critical crack length ac decreases with increasing slope angle, although the
decrease is less pronounced for the criterion FC3 for which ac levels off for a slope angle around 40∘. Criterion
FC1 yields a lower critical crack length than FC2, which is itself lower than FC3 since 𝜏p1

< 𝜏p2
< 𝜏p3

in the
range of normal stress values used (𝜎 < 1 kPa).

4. Discussion

The findings of Heierli et al. (2008; anticrack model) and Gaume et al. (2017; SCM) showed contradictory
results on the effect of slope angle on the onset of crack propagation in weak snow layers. Hence, in a typical
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Figure 4. Critical crack length ac as a function of slope angle. Inset: Shear strength of weak snow layers obtained with
laboratory experiments (Reiweger et al., 2015) for fast (circles) and slow (squares) experiments. The solid line (FC1)
represents a linear fit (Mohr-Coulomb) to the experimental data used to compute ac. FC2 and FC3 are two other
hypothetical failure criteria (see text). System properties: 𝜌 = 180 kg∕m3, E = 2 MPa, D = 0.2 m, Dwl = 0.02 m, and
Gwl = 0.4 MPa.

slab-weak layer configuration, we computed the maximum shear stress at the crack tip using a finite element
model, which was not directly possible in Gaume et al. (2017) because of the discrete nature of the weak
layer. Our new model based on FEM confirms the recent results of Gaume et al. (2017) predicting that the
critical crack length decreases with increasing slope angle, in contrast to the anticrack model of Heierli et al.
(2008) who obtained a critical crack length independent of slope angle. We also show that the assumption
for the failure criterion of the weak layer does not strongly affect the general decreasing trend of the critical
crack length with increasing slope angle. Hence, we suggest two main reasons for the discrepancy with the
anticrack model:

1. The anticrack model assumes a rigid weak layer to evaluate the mechanical energy of the slab. Hence, the
elastic mismatch between the slab and the weak layer is not accounted for.

2. The mechanical energy derived in the anticrack model does not correctly reproduce the interplay between
slab bending and tension under mixed-mode loading. Indeed, van Herwijnen et al. (2016) recently showed
using FEM that the mechanical energy of the slab was generally underestimated, except for low slope angles.

Our analytical model (equation (2)) also slightly differs from SCM (Gaume et al., 2017). In particular, in the
SCM, the maximum shear stress at the crack tip was related to a∕Λ and (a∕Λ)2 only. However, here, the maxi-
mum shear stress also depends on an additional coupled term a2∕(ΛD). This probably explains the difference
observed for the influence of slab and weak layer elastic moduli (Figures 2b and 2c). Nevertheless, for realis-
tic elastic moduli of the slab and the weak layer (E ∈ [1 − 20] MPa and Ewl ∈ [0.05 − 2] MPa), both models
yield very similar results in terms of maximum shear stress 𝜏max and thus of absolute value of the critical crack
length ac (Figures 2b and 2c). Concerning the other mechanical properties of the system, our new model and
the SCM (Gaume et al., 2017) yield very similar results with consistent trends (Figure 2), although some slight
quantitative discrepancies are observed (Figures 2e and 2f).

The maximum shear stress at the crack tip of the weak layer was evaluated assuming a purely linear elastic and
isotropic behavior of both the slab and the weak layer before failure. We made this choice as we wanted to
focus on the onset of crack propagation in the weak layer only. Nevertheless, the same model could be used
to check whether tensile stresses in the slab exceeded the tensile strength to evaluate if the slab would frac-
ture before the onset of crack propagation (Reuter & Schweizer, 2018). As shown by Gaume, van Herwijnen, et
al. (2015), slab fractures rarely occur before the onset of crack propagation, except for very soft slabs (𝜌 < 150
kg/m3). For the weak layer, the isotropic elastic character is probably not very realistic since these layers are
probably stiffer in compression than in shear. Although failure anisotropy was accounted for through the fail-
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ure envelope, an orthotropic elastic behavior with different elastic moduli in the different loading directions
(Srivastava et al., 2016; Walters & Adams, 2014) might be more appropriate.

Reiweger et al. (2015) evaluated the failure envelope of weak snowpack layers, that is, the strength under
different loading conditions. They showed that weak layer strength can be described by a Mohr-Coulomb
criterion for typical values of normal stress encountered in the field. Hence, the shear strength increases with
increasing normal stress 𝜎. However, for large values of 𝜎, snow can exhibit compressive failures leading to a
decrease of the shear strength with increasing 𝜎. Furthermore, Chandel et al. (2015) described weak layers for
which the shear strength always decreases with increasing 𝜎. These discrepancies reveal the strong variability
of weak snow layers, such that there is probably no unique failure criterion describing all types of weak layers.
Nevertheless, although the absolute strength value has a strong influence on the critical crack length, our
model suggests that the trend of weak layer strength with slope angle𝜓 does not significantly affect the trend
of the critical crack length with 𝜓 (Figure 4). However, a decreasing trend of weak layer strength with 𝜎 leads
to a gentler decrease of ac with slope angle.

Concerning size effects, we checked that our results obtained for realistic snowpack properties are uninflu-
enced by the system length L. Typically, to prevent size effects, the condition (a +Λ)∕L ≪ 1 must be fulfilled.
In our simulations, this ratio is generally lower than 0.3 except for combinations of large crack lengths (a> 0.5
m) and very large slab elastic moduli (E> 50 MPa). In that case (a +Λ)∕L can reach ∼0.5 for which size effects
occur. Nevertheless, these values of crack length and slab elastic modulus are larger than the ones typically
encountered in the field.

Finally, we consider here a PST configuration with a preexisting crack, which is different from a real slab
avalanche scenario. In a PST, the crack in the weak layer is artificially made using a saw. However, in the case of
a skier-triggered slab avalanche, the skier directly induces a failure in the weak layer below his skis (Schweizer
& Jamieson, 2001). Recently, Gaume and Reuter (2017) developed a new model for skier-triggered avalanches
that compares the critical crack length obtained in a PST to the so-called skier crack length, that is, the size of
the area where the skier-induced stress exceeds the shear strength of the weak layer. As previously suggested
by Schweizer and Jamieson (2001), Gaume and Reuter (2017) confirmed that a skier does not need to hit a
(hypothetical) preexisting crack in the weak layer to trigger a slab avalanche.

5. Conclusion

We conducted finite element simulations of a snow slab overlaying a weak snow layer in which a preexist-
ing crack was assumed allowing for slab tension and bending. We computed the maximum shear stress 𝜏max

as a function of snowpack properties. A parametric analysis evidenced that 𝜏max increases with increasing
crack length, slab thickness, slab density, weak layer elastic modulus, and slope angle. On the other hand, 𝜏max

decreases with increasing elastic modulus of the slab. The critical crack length for the onset of crack propa-
gation was evaluated by comparing the maximum shear stress to strength values obtained with snow failure
experiments. The process of initiating and propagating cracks on flat terrain and thus remote triggering of
avalanches can be explained by our model in line with the anticrack model. However, our model confirms the
recent findings of Gaume et al. (2017) showing that the critical crack length decreases with increasing slope
angle. Although the model of Gaume et al. (2017) was in fair agreement with field data, future experimental
work is required to confirm our numerical results on the effect of slope angle on crack propagation.
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