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ABSTRACT:  Spatial variations of weak layer and slab properties affect snow slope stability. To quantify 
spatial variability at the slope scale, penetration resistance was measured with a high resolution snow-
micro penetrometer (SMP) in a partly randomized grid pattern. The design consisted of 46 measurement 
locations and was optimized for geostatistical analysis. In addition, a full snow profile and 20 compression 
tests were performed within the grid. Stability test results were compared to stability information derived 
from the SMP signal using a recently developed algorithm. A dataset consisting of five grids done fort-
nightly on a southwest facing slope was analysed. A layer of facets was the predominant weak layer and 
was identified by the algorithm in most cases. The stability patterns derived from the compression tests 
were mostly reproduced by the stability formulation of the algorithm. Changes of slab properties seemed 
to be a major cause for changes in slope stability over time. The spatial  stability variation was derived 
from a indicator semivariogram. Based on the resulting range and nugget ratio a scheme for estimating 
slope stability was proposed. 
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1.  INTRODUCTION 
 

Spatial variations of weak layer and slab 
properties are considered a key factor for snow 
slope stability. Spatial variability is presumably 
caused by meteorological conditions such as wind 
and radiation, as well as metamorphic processes 
(Schweizer et al., 2008). Kronholm and Schweizer 
(2003) suggested slope stability to be related to 
the degree of stability variation, the length scale of 
variation and the mean point stability. Previous 
studies analysed layer properties at the slope 
scale (Kronholm and Schweizer, 2003, Birkeland 
et al., 2004). Layers were often spatially continu-
ous and showed less variability than the stability of 
small column tests.  

The snow micro-penetrometer (SMP) de-
veloped by Schneebeli and Johnson (1998) 
measures high resolution penetration resistance 
and allows to derive micro-structural snow pa-
rameters. Pielmeier et al. (2006) related snow 
layer properties derived from the SMP to point 
stability by analysing a series of individual manual 
snow profiles in conjuncture with an SMP meas-

urement. Kronholm and Schweizer (2003) were 
unable to relate spatial SMP measurements to the 
manual stability observations partly due to (a) the 
sampling design that did not allow a geostatistical 
analysis for the manual stability observations and 
(b) the lack of an SMP derived stability parameter. 
Recently, Bellaire et al. (2008) have developed an 
algorithm for analysing the SMP signal with the 
aim to detect potential weak layers and estimate 
the probability of triggering.  

We will analyse a series of spatial meas-
urements at the slope scale of penetration resis-
tance (SMP) and point stability (compression test) 
performed about fortnightly on a south-west facing 
slope near Davos, Switzerland. The aim is to de-
rive stability patterns and relate them to slope 
stability. 
 
 
2.  METHODS 
 
2.1  Snow micro-penetrometer (SMP) 
 

Schneebeli and Johnson (1998) devel-
oped a snow micro-penetrometer (SMP) for high 
resolution (in space and time) snow cover investi-
gations. The SMP is a cone-shaped probe which 
is driven into the snow cover by a motor at a con-
stant speed of 20 mm s-1. Penetration resistance is 
measured every 4 μm by a piezo-electric force 
sensor.  

______________________ 
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Johnson and Schneebeli (1999) devel-
oped a microstructural model to derive microme-
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chanical properties of snow from the SMP signal. 
A microstructural element will rupture within a 
typical length of dimension Ln, and will induce a 
peak force in the SMP signal Fmax. The rupture 
force fr  is the force needed to rupture the crystal 
structure, i.e. a bond. The number of ruptures per 
unit length is defined as the number of peaks 
npeaks. Figure 1 illustrates these three parameters 
for two different snow types. 
 The peak force and the number of rup-
tures are typically larger for small rounded grains 
(non-persistent grain type) than for depth hoar 
(persistent grain type), a typical weak layer 
(Schneebeli et al., 1999).  
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Figure 1: Schematic SMP signals for small 
rounded grains (top) and depth hoar (bottom), and 
the definition of the microstructural parameters, 
rupture force fr, element length Ln and peak force 
Fmax. The number of peaks npeaks corresponds the 
number of ruptures per unit length. 
 
 
2.2  Partly randomized sampling design 
 

To quantify spatial variability, measure-
ments of snow cover properties need to be per-
formed spatial distributed on potential avalanche 
slopes. For spatial analysis geostatistics has been 
used to identify spatial structure and correlation 
length of snow properties responsible for ava-
lanche formation (e.g. Kronholm.) An optimized 
sampling design enables to identify the spatial 
structure with a minimum of measurements. If the 
correlation length is unknown, then the sampling 
design should contain some randomness (Kron-
holm and Birkeland, 2007). However, in practice, 
randomly distributed measurement points are diffi-

cult to locate on grids where the extent (maximal 
distance between measurement points) is small (≤ 
20 m), i.e. locating points, for example, by GPS is 
impossible. 

The sampling design used in this study 
was developed for a grid of 18 m × 18 m (Figure 
2). This area was divided into nine sub-grids of 
6 m × 6 m. Each sub-grid contains 5 SMP meas-
urements in a L-shaped order (Cline et al., 2001). 
The spacing between each SMP measurement 
differs (0.25 m, 0.5 m, 1 m). This sampling design 
has well distributed lag distances h (distances 
between measurement locations), with a mean lag 
distance of 9 m and a extent of 19 m. Additionally, 
each sub-grid contained two compression test 
locations left and right from the SMP measure-
ment (20 in total). Furthermore, a manually ob-
served snow profile, including an additional SMP 
profile next to it, and a rutschblock test and two 
compression tests were performed within a grid. 
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Figure 2: Sampling design optimized for geostatis-
tics. Dots indicate locations of SMP measure-
ments, squares location of compression tests 
additionally to the SMP measurement. P indicates 
the position of the manual profile and the 
rutschblock and two additionally compression 
tests. 
 
 
2.3  SMP signal analysis 
 

We used an algorithm recently developed 
by Bellaire et al. (2008, submitted) to extract sta-
bility information from the SMP signal. The algo-
rithm identifies the potential weak layer and esti-
mates the probability of triggering by a stepwise 
sequential analysis of the SMP signal. In a first 
step, a structural parameter Ψ was defined: 
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A
nf peaksr=Ψ    (1) 

 

with the mean rupture force rf , averaged over one 
millimetre of the signal, npeaks the number of rup-
tures and A the surface area of the sensor tip 
(A = 39 mm2). Schweizer and Jamieson (2003) 
found that large discontinuities in structure indicate 
weak layers or interfaces. Consequently, a second 
structural parameter Δ was defined: 
 

)(
max

zw
F
gradA Ψ

=Δ   (2) 

 

where w(z)  is a depth dependent weighting func-
tion. Potentially weak layers or transitions are 
identified by locating the four extreme values 
of Δ. To identify the layer boundaries the gradient 
of the coefficient of variation (COV) of the force 
signal  was calculated (Spiegel and Stephens, 
1999). A layer boundary was defined as the posi-
tion where the gradient of the COV is larger than 
0.1 (defined empirically). These positions above 
and below the four extreme values of Δ are de-
fined as upper and lower boundary, respectively.  

Finally, a stability parameter S was de-
fined: 

 

Ψ=
WLF

FS max     (4) 

 

with Fmax the maximum penetration resistance 
within the slab, and wlF the mean penetration re-
sistance from the upper to lower boundary of the 
weak layer. Values of S ≤ 190.4 × 103 N2 m-2  indi-
cated rather unstable conditions and were as-
signed the stability class “poor”, and “fair-to-good”, 
alternatively. 

Bellaire et al. (2008, submitted) compared 
the failure layer depth identified with the above 
described algorithm to the observed failure layer 
depth for 68 profiles. In 88% of the cases the weak 
layer corresponded to one of the four potential 
weak layers identified by Δ. These SMP profiles 
were classified into the two stability classes with 
an accuracy of 75% - provided one of the four 
potential weak layers was selected manually as 
the critical one. 

 
2.4  Measurements and manual observations 
 

As described above each grid consisted of 
46 SMP measurements and 10 pairs of compres-
sion tests. We used the minimum score of the two 
compression tests (done side by side) for further 

analysis. The compression test scores where clas-
sified into two stability classes of “poor” and “fair-
to-good” following Schweizer and Jamieson 
(2003). Compression test scores ≤ 13 were classi-
fied as poor, and >13 as fair-to-good. 

 The 46 SMP measurements were ana-
lysed using the above described algorithm for 
weak layer detection and stability estimation. For 
each sub-grid a mean stability was defined by 
taking the median stability from all SMP measure-
ments of the sub grid. This mean stability was than 
compared to the stability test result of the corre-
sponding compression test. 
 
2.4  Data analysis 
 

To quantify the differences between the 
stability derived from the compression test and the 
stability estimated by the algorithm, spatial as well 
as non-spatial statistics were used. For the spatial 
analysis we calculate the sum of absolute differ-
ences (SAD) defined as:  
 

( )∑ −= SMPCT SS
N

SAD 1
 (5) 

 
with SCT and SSMP the stability at corresponding 
grid locations derived by the compression test  
and the SMP, respectively. SAD = 0 indicates a 
perfect match between all grid locations. 

The non-spatial statistics were done by 
cross-tabulating the stability estimates and calcu-
lating a Yates’ corrected Pearson χ2 statistic 
(Spiegel and Stephens, 1999). A level of signifi-
cance p=0.05 was chosen to decide whether the 
differences were statistically significant.  

To determine the spatial structure of a grid 
an experimental indicator semi-variogram 
(Goovaerts, 1997) was calculated by: 
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with m(h) the number of point pairs separated by 
the lag distance h, and xi=(Xi,Yi)  the location of 
the measurements. Zind is the indicator variable, 
which is 0 for rather unstable (“poor”) and 1 for 
rather stable (“fair-to-good”) conditions. By fitting a 
spherical model to the experimental 
semivariogram we determined the sill σ2, range R, 
and the nugget τ as well as the nugget ratio α=τ/σ2 
(Webster and Oliver, 2007). When no range could 
be identified by the model the range R was as-
sumed to be ≥ 19 m, i.e. the maximal extent. 
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3.  DATA 
 

We analysed 5 grids on a south-west fac-
ing slope above timberline (2450 m a.s.l) in the 
region of Davos, Switzerland. The predominant 
weak layer on the slope was a layer of depth hoar. 
The grids were done within 4 hours about fort-
nightly from January to March 2008.  
 The slope stability was estimated at end of 
the field day based on any sign of instability such 
as “whumpfs” or recent avalanche activity on 
nearby slopes. We recorded and reported this 
stability estimate (expressed as the danger level) 
on a regular basis. During the observation period, 
from grid 1 to 5, snowpack stability generally im-
proved. 
 
 
4.  RESULTS 
 

The comparison between the observed 
stability (compression test results) and the stability 
estimated by the algorithm from the SMP signal is 
shown in Figure 3. Table 1 summarises the results 
of the spatial and non-spatial analysis. 

The non-spatial analysis shows no signifi-
cant differences between the stability derived from 
the SMP and the observed stability (CT) for all 
grids. The largest deviation is observed for grid 3. 
The spatial statistics (SAD) indicated that usually 
in 6 or more (out of 10) locations the stability esti-
mate agreed with the stability observed with the 
compression test. Figure 3 suggests that many of 
the stability patterns can be found in both the sta-
bility estimated from the SMP and the stability 
observed with the CT. 

 
 

 
The weak layer penetration resistance and 

the maximum penetration resistance of the slab 
derived from the SMP are shown in Figure 4. The 
penetration resistance of the weak layer de-
creased from grid 1 to 2 and subsequently in-
creased up to grid 5. The maximum penetration 
resistance in the slab was considerably higher for 
grids 3 to 5 than for grids 1 to 2. 

 

 
Figure 3:  Comparison between (a) observed sta-
bility (CT) and (b) estimated stability by the SMP 
algorithm for grids 1 to 5. Dots indicate poor, open 
circles fair-to-good snowpack conditions. 
 

Table1:  Comparison between stability derived 
from compression tests and the stability derived 
from the SMP. The sum of absolute differences 
(SAD) (spatial statistics) and the p-value (non-
spatial statistics) are given together with the 
rutschblock (RB) score, the slope median com-
pression test (CT) score and the estimated slope 
stability for each grid.  

 
Grid 
No. 

RB CT Slope 
stability 

p-value SAD
 

1 2 10.5 poor-to-fair 1 0 
2 2 11 poor 1 0.1 
3 4 12.5 poor-to-fair 0.14 0.4 
4 3 14 fair-to-good 0.63 0.4 
5 6 16.5 fair 0.65 0.2 
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Table 2 shows the correlation length 
(range) R, sill σ2, nugget τ and the nugget ratio α 
derived from a spherical indicator semivariogram 
model for grid 1 to 5, as well as the ratio of the 
range to a critical range assumed to be about 
10 m (Schweizer, 1999). The geostatistical results 
for the SMP measurements suggest a decreasing 
range R and a increasing sill σ2 with time, i.e. from 
grid 1 to 5.  

Based on the semivariogram values range 
R, sill σ2 and nugget τ, summarized in Table 2, a 
stability scheme is suggested (Figure 5). Slopes 
can be classified into various stability classes de-
pending on the mean point stability, the range of 
autocorrelation in relation to a critical failure length 
and the nugget ratio. The scheme is based on the 
proposal by Kronholm and Schweizer (2003) but 
now uses measured geostatistical parameters. 

 
 

5.  DISCUSSION 
 

Stability patterns at the slope scale de-
rived by compression tests were partly reproduced 
by a recently developed stability algorithm to ana-
lyse SMP signals. However, both the stability de-
rived from compression tests as well as the esti-
mated stability from the SMP signals are prone to 
errors.  

The compression test scores can be af-
fected by not uniform columns and inconsistent 
taping. Furthermore, the comparison was done by 
classifying the compression test scores into two 
stability classes based on a threshold value 
CT ≤ 13, i.e. the uncertainty of the compression 
test result affects the stability classification, in 
particular if close to the threshold value. This 
might partly explain the mismatch in grid 3 (me-
dian compression test score was 12.5, RB score 
was 4). The SMP stability estimate is prone to 
measurement errors and limitations of the algo-
rithm, which will also affect the stability pattern. 

The maximal measured penetration resis-
tance of the slab seems to be an indicator for 
slope stability. Large values were associated with 
rather stable conditions. Manual observations 
showed thick melt-freeze crusts within the slab 
when grids 3 to 5 were performed. The weak layer 
penetration resistance from the grids classified as 
poor to the grids classified as fair-to-good. How-
ever, limitations of the algorithm in particular on 
how layer boundaries are defined may effect the 
mean weak layer penetration resistance. 
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Figure 4: (a) Distribution of weak layer penetra-
tion resistance derived from the SMP for grids 1 
to 5 and (b) distribution of maximum penetration 
resistance of the slab for grids 1 to 5. Boxes span 
the interquartile range from 1st to 3rd quartile with 
the horizontal line showing the median. Whiskers 
show the range of observed values that fall within 
1.5 times the interquartile range above and below 
the interquartile range. Outlier are marked with 
asterisk.  
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Figure 5: Schematic for slope stability classifica-
tion based on the ratio of correlation length (range 
R) to a critical failure length Rc, mean point stabil-
ity, and the nugget ratio α as a measure of point 
stability variation. 
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We analysed five consecutive arrays. Dur-
ing the time the measurements were done slope 
stabilisation was observed. In general, it is not 
possible to decide whether a slope is unstable, 
unless it is triggered. Occasionally, we observed 
“whumpfs” while approaching or working on the 
slope which is not steep enough to slide. Slope 
stability is therefore an estimate based on any sign 
of instability we were able to observe in the region 
on the day of our field work. As a result, observed 
slope stability should be interpreted as a trend 
only towards either rather unstable or stable condi-
tions, respectively. More observations on different 
slopes and aspects would be needed to validate 
the proposed slope stability classification scheme. 

 
 
6.  CONCLUSIONS 
 

We analysed spatial measurements of 
penetration resistance (SMP) and stability (CT) 
that were performed using a partly randomized 
grid design on a south-west facing slope near 
Davos, Switzerland. A recently developed algo-
rithm to derive stability from the SMP signal was 
used and results suggest rather good agreement 
with observed stability (CT). From grid 1 to 5 the 
slope in general stabilized in accordance with in-
creasing compression test scores and increasing 
number of SMP signals that were classified as 
rather stable (fair-to-good). General stability pat-
terns observed with the compression test were 
mostly reproduced by the SMP stability. The 
causes of these spatial patterns are still unknown. 
Geostatistical analyses suggested a relation be-
tween the range, sill and the nugget-ratio, and 
slope stability. The proposed classification scheme 
has to be considered as preliminary and more 
data will be needed to link spatial patterns ex-
pressed with geostatistical parameters to slope 
instability and avalanche formation in general. 

Our results suggest that the SMP – still 
supplemented with some manual observations – 
has promising potential for snow cover investiga-
tions where high resolution data are required. 
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