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Spatial variations of weak layer and slab properties are believed to affect snow slope stability. To quantify
spatial variability at the slope scale, penetration resistance was measured with a high-resolution snow
micro-penetrometer (SMP) in a partly randomized grid pattern. The grid design consisted of 46 SMP
measurement locations. In addition, a full snow profile and 20 compression tests as well as a Rutschblock test
at the snow profile location were performed within the grid. Fifteen slopes of different aspects were sampled
of which 11 could be analysed. Weak layer and slab properties were characterised using non-spatial as well
as spatial statistics and results were related to slope stability. The geostatistical analysis revealed that in
more than half of the cases a range could be determined. Slab layers tended to have more spatial structure
than the weak layer. Though some trends are apparent, firm conclusions on the dependence of slope stability
on spatial variations were not possible due to the limited range of snow conditions in the dataset, and the
fact that the definition of slope stability remains elusive. Based on our limited data set, we can therefore not
specify the conditions when spatial variations of weak layer and slab properties are most relevant for snow
slab release.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Spatial variations of weak layer and slab properties are considered
a key factor for snow slope stability. Spatial variability is presumably
caused by meteorological conditions such as wind during snow
deposition, as well as metamorphic processes after deposition
(Schweizer et al., 2008a). Kronholm and Schweizer (2003) suggested
slope stability to be related to the degree of stability variation, the
length scale of variation and the mean point stability.

Previous studies analysed weak layer properties at the slope scale
(Kronholm and Schweizer, 2003; Birkeland et al., 2004). Kronholm et
al. (2004) determined the spatial structure of seven weak layers and
the corresponding slab layers. They found the spatial structure of slab
layers to be more variable than the spatial structure of weak layers.
Schweizer et al. (2008a) concluded that weak layers were often
spatially continuous and showed less variability than the stability of
small column tests.

The snow micro-penetrometer (SMP) developed by Schneebeli
and Johnson (1998) measures penetration resistance at high-
resolution and allows one to derivemicro-structural snow parameters
(Johnson and Schneebeli, 1999). Pielmeier and Schweizer (2007)
made a first attempt to classify a priori known weak layers with

regard to stability based on these micro-structural parameters.
Recently, Pielmeier and Marshall (2009) have improved this proce-
dure based on a series of rutschblock tests in conjunction with SMP
measurements. Kronholm and Schweizer (2003) were unable to
relate spatial SMP measurements to the manual stability observations
partly due to (a) the sampling design that did not allow a spatial
analysis for the manual stability observations and (b) the lack of an
SMP derived stability parameter. Bellaire et al. (2009) developed an
algorithm for analysing the SMP signal with the aim to detect
potential weak layers and estimate the degree of instability with
regard to skier-triggering.

For this study, we analysed a series of spatial measurements at the
slope scale of penetration resistance (SMP) and point stability
(compression test, Rutschblock test) performed on slopes near Davos,
Switzerland. The aim was to detect a relation between weak layer and
slab properties (and their spatial variations) and slope stability.

2. Methods

2.1. Snow micro-penetrometer (SMP)

Schneebeli and Johnson (1998) developed a snow micro-pene-
trometer for rapid snow cover investigations at high vertical
resolution. The SMP consists of a cone-shaped probe which is driven
into the snow cover by a motor at a constant speed of 20 mm s−1.
Penetration resistance is measured every 4 μm by a piezo-electric
force sensor.
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To derive micro-mechanical properties of snow from the SMP
signal, Johnson and Schneebeli (1999) developed a micro-structural
model. Amicro-structural elementwill rupture within a typical length
of dimension Ln, and will induce a force peak in the SMP signal Fmax.
The rupture force fr is the force needed to rupture the crystal
structure. The rupture is assumed to occur between two crystals, i.e. at
a bond. The number of ruptures per unit length npeaks is defined as the
number of peaks (local maxima). Fig. 1 illustrates these three
parameters for two different snow types.

The peak force and the number of ruptures are typically large forwell-
bonded snow and small for poorly bonded snow structures. Johnson and
Schneebeli (1999) (Fig. 4) showed that, for example, a wind slab has
approximately a ten times larger rupture force than snow consisting of
depth hoar.

2.2. Sampling design

To quantify the effect of spatial variations on slope stability,
spatially distributed measurements of snow cover properties need to
be performed on potential avalanche slopes. For spatial analysis
geostatistics have been used to identify the spatial structure, in
particular the correlation length of snow properties, which is believed
to be related to avalanche formation (e.g. Kronholm, 2004). An
optimized sampling design enables one to identify the spatial
structure with a minimum of measurements. If the correlation length
is unknown, then the sampling design should contain some
randomness (Kronholm and Birkeland, 2007). However, in practice,
randomly distributed measurement points are difficult to locate on
grids where the extent (maximum distance between sampling
locations) is small (≤20 m), i.e. locating points, for example, by GPS
requires differential GPS.

Skøin and Blöschl (2006) demonstrated that the estimated
correlation length can be biased depending on the choice of extent,
spacing (distance between sampling points) and support (area of
sampling). This means that the sampling design is of particular
importance for estimating the correlation length. Furthermore, they
pointed out that the sampling design should be adapted to the
expected correlation length. As a rule of thumb, Skøin and Blöschl
(2006) suggested an optimized sampling design with an extent larger
and a spacing smaller than the expected correlation length.

Correlation length of snow cover properties can range from a few
decimeters to several meters, or more. Therefore, the correlation
length is a priori unknown. Also, the number of processes acting on

the snow cover, and the typical length scale of these processes are not
sufficiently known. Many processes, such as wind, cause variations at
different scales (e.g. Schweizer et al., 2008b). Since we focus on
avalanche formation, in particular on the effect of spatial variations on
avalanche formation, we can make an assumption on the length scale
that is most relevant. This scale is related to the avalanche release
process which can be described in terms of fracture mechanics. In
order for an initial failure to propagate so that eventually the slab
becomes detached, the failure has to reach a critical size. Independent
estimates suggest that the critical size is b10 m but larger than the
slab thickness (e.g. Schweizer et al., 2003). Therefore the sampling
design should be such that a correlation length of a few meters can be
determined — at least approximately. In other words, we are not
primarily seeking a robust estimate, but are interested whether a
correlation length of a few meters exists or not.

The sampling design used in this study was developed for a grid of
18 m×18 m (Fig. 2). This area was divided into nine sub-grids of
6 m×6 m. Each sub-grid contained five SMP measurements in an
L-shaped design as suggested by Cline et al. (2001). The distance
between each SMP measurement within a sub-grid differed (0.25 m,
0.5 m, and 1 m). This sampling design has a well distributed spacing h,
with a mean spacing of 9 m and an extent of 19 m; for lag distances
h=4–17 m the number of point pairs is N30 (compare Fig. 3). Our
sampling design is partly randomized and has therefore no fixed
spacing. The mean spacing is on the order of the maximum expected
correlation length and might therefore be somewhat too large.
However, our random sampling design also includes distances smaller
than the expected correlation length, which allows one to cover the
small-scale variability.

2.3. SMP signal analysis

For the present study we only focused on the micro-structural
parameter Ψ introduced by Bellaire et al. (2009), which we used to
describe the structure of a layer. The parameter Ψ (Pa), which is
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Fig. 1. Schematic SMP signals for small rounded grains (top) and depth hoar (bottom),
and the definition of the micro-structural parameters, rupture force fr, element length
Ln and peak force Fmax. The number of peaks npeaks corresponds to the number of
ruptures per unit length.
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Fig. 2. Sampling design of the present study. Dots indicate locations of SMP
measurements, squares location of compression tests adjacent to the SMP measure-
ment. The position of the manual profile is indicated by “P”, where two additional
compression tests and a SMP measurement were performed. “RB” locates the position
of the Rutschblock test. The SMP measurements within the dashed square are 0.25 m
apart; the other ones are up to scale (0.5 and 1 m apart).

235S. Bellaire, J. Schweizer / Cold Regions Science and Technology 65 (2011) 234–241



Author's personal copy

similar to the micro-scale strength used by Pielmeier and Marshall
(2009), is defined as:

Ψ =

P
f r npeaks

A
ð1Þ

with
P
f r (N) the mean rupture force averaged over one millimetre,

npeaks the number of ruptures within 1 mm of the signal, and A the
lateral surface area of the conical sensor tip (A=39 mm2). The
parameter Ψ is small for poorly bonded layers (depth hoar, surface
hoar) and is rather large for well-bonded layers (small rounded
crystals, crusts).

Bellaire et al. (2009) suggested various parameters and split values
for the stability estimation. The parameterΨwith a threshold value of
about 5 kPa allowed classifying SMP profiles into rather “poor”
(smaller than threshold) or rather “fair-to-good” snowpack stability
(larger than threshold) with a an accuracy of 78% (not cross-
validated).

2.4. Measurements and manual observations

Each grid consisted of 46 SMP measurements and 10 pairs of
compression tests (9 in sub-grids and one pair near themanual profile
site) as well as a manual profile and a rutschblock test (Föhn, 1987).
All compression tests (Jamieson, 1999) within one grid were
performed by either one of two experienced observers. Early season
training sessions ensured comparable results. The failure layer
identified by the Rutschblock test was defined as the predominant
weak layer. For further analysis, we considered only compression test
scores for this weak layer. We used the minimum score of two side by
side compression tests and assigned this score to the stability of the
sub-grid or the profile location. The median difference between the
two compression tests was one score (3rd quartile: 2 scores). In most
cases, the RB failure layer also failed in both of the two adjacent
compression tests. In five out of 110 compression test pairs, only one
compression test of the pair failed on the weak layer identified by the
Rutschblock test.

The 46 SMP measurements in each grid were visually inspected
and signals of questionable quality were excluded. Therefore the
number of SMP measurements available for analysis differed per grid
(from 41 to 46). For all SMP signals we manually located the weak
layer using the manual profile and the compression tests as a
reference. The weak layer was present in all SMP signals and was
analysed as described above using the parameter Ψ. All layers above
the weak layer we considered as part of the slab layer.

The manual profiles were classified into five stability classes (1:
“very poor” to 5: “very good”) based on the stability classification
introduced by Schweizer and Wiesinger (2001).

2.5. Data analysis

To assess whether the study slopes showed spatial structure we
used spatial statistics. First, we estimated the spatial structure with
the Moran's I coefficient, a measure of spatial autocorrelation (Moran,
1948) that has been recently applied in a snow study by Hendrikx et
al. (2009). The coefficient ranges from −1 (dispersion) to +1
(clustered). A value of zero indicates a random pattern. The null
hypothesis chosen was “no spatial autocorrelation exists”. For this
study, we choose a level of significance pb0.05 to reject the null
hypothesis. The Moran's I statistics was calculated with the Moran
I-function implemented in the ape-package (Paradis et al., 2004) for R
(R Development Core Team, 2009).

Second, geostatistics were used to determine the correlation
length. Therefore an experimental semivariogram was calculated
using a robust method to remove outliers (Cressie and Hawkins,
1980):

γ hð Þ =
1

N hð Þ ∑
N hð Þ

i=1
jZ xi + hð Þ−Z xið Þj

1
2

" #

0:914 + 0:988
N hð Þ

� �
4

ð2Þ

with Z the variable of interest at sampling location xi=(Xi,Yi) andN(h)
the number of point pairs separated by the lag distance h.

Slope scale trends have been quantified and removed prior to the
geostatistical analysis. Trends have been quantified by applying a first
order polynomial to the data, with coordinates X and Y as independent
variables. The correlation coefficient r2 of this regression gives the
accuracy of the fit. In addition, it describes how much of the spatial
variation can be explained by slope scale trends.

By fitting a spherical model to the experimental semivariogramwe
determined the sill σ2, range R, and the nugget τ (Webster and Oliver,
2007). Only lag distances to half the extent were considered. The
weighted sum of squares (WSS) determined the accuracy of the fit.

2.6. Testing the sampling design

Geostatistical analysis is influenced by the sampling design (Skøin
and Blöschl, 2006). To assess the applicability of the sampling design
introduced above for our specific purpose (presence or absence of a
range of a few meters), Gaussian random fields with defined initial
covariance parameters (σ2=1±0.2; R=2 m, 5 m and 8 m±0.2 m,
τ=0; 100 simulations per range) were generated using the grf-
function implemented in the RandomFields-package (Schlather,
2001) for R (R Development Core Team, 2009). The fields were
generated on a rectangular grid with a regular spacing of 0.25 m
(5328 points). Each point of the sampling location was assigned to the
corresponding value of the generated field and a sample variogram
was calculated.

A spherical model λ was fitted to each sample variogram and the
parameter range R, sill σ2 and the nugget τ were determined (λ=R,
σ2, τ). Amethod suggested by Cressie (1993)was used to estimate the
best fitting variogram. This method used the weighted least-squares
approach and is given by the function J:

J λð Þ = ∑
K

i=1
N h ið Þð Þ γ̂ðh ið Þ−γ h ið Þ;λð Þ

γ h ið Þ;λð Þ
� �2

ð3Þ

where N(h(i)) is the number of point pairs separated by the lag
distance h(i) (i=1,…,K), and γ̂ is the sample variogram and γ the
theoretical variogram. The function J gives more weight to smaller

Fig. 3. Frequency distribution of available point pairs per lag distance for the sampling
design shown in Fig. 2.
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lags and to lags with more point pairs N(h(i)). The initial covariance
parameters of the theoretical variogram were the same as used to
generate the random fields.

3. Data

During the winters 2006–2007 and 2007–2008 fifteen grids were
observed on different slopes above timberline (at about 2400 m a.s.l.)
in the region of Davos, Switzerland. The slopes had four different
aspects (N, NE, S, and SW) and the slope angle varied between 18° to
34°. Four grids had to be discarded since the majority of the SMP
measurements were erroneous. In most of the remaining eleven grids
(eight out of eleven) the predominant weak layer was a layer of
persistent grains consisting of depth hoar or large faceted crystals. The
other three weak layers or interfaces were (1) a layer of small graupel,
(2) a mixed layer of decomposed fragmented particles and small
rounded grains, and (3) a hardness change (fist to four fingers, grid
11) within a layer of small rounded grains, i.e. not a distinct weak
layer.

The study slope was classified with regard to stability into the
stability classes of “poor”, “fair” and “good”. The slope stability
estimate was based on the profile stability class (Schweizer and
Wiesinger, 2001), the median compression test score of the grid as
well as on any signs of instability such as “whumpfs”, cracking or
recent avalanche activity on nearby slopes (Table 1). Following
Schweizer and Jamieson (2003), we assigned a median compression
test score per grid of ≤13 to the stability class of “poor”, and scores
N13 to “good” slope stability. Grids where the manual profile was
classified as “fair” (profile stability class 3), were rated as “fair” (slope
stability), if either the mean compression test score was ≤13 or signs
of instability had been observed.

4. Results

We present (1) the non-spatial statistics and relate them to slope
stability, and (2) the spatial statistics for the weak layer and slab layer
properties.

4.1. Non-spatial analysis of slab and weak layer properties

Descriptive statistics for all eleven grids are compiled in Table 2. In
general, the median and the semi-interquartile range (SIQR; Spiegel
and Stephens, 1999) of the parameter Ψ were lower for the weak
layer than for the slab layers. One exceptionwas grid 11. In this grid,Ψ
had low median values and little spread (i.e. small SIQR) for both the
weak layer and the slab, and Ψ was larger for the weak layer than for
the slab. The failure layer was not a distinct weak layer, but rather a
distinct step in the hardness within the snowpack. Whereas the
dispersion was almost twice as large for the slab layers than for the
weak layers, the slab layers had on average a lower quartile coefficient
of variation, i.e. a lower relative dispersion than the weak layers.

Bellaire et al. (2009) proposed a threshold value for Ψ of 5 kPa to
discriminate between rather unstable and rather stable SMP profiles.
According to this, five grids (1, 2, 5, 6 and 11) should have rather poor
stability (Table 2). The first two of these grids were indeed rated as

“poor” and were associated with soft slabs (i.e. low Ψ for the slab).
Grids 5 and 6 had well consolidated slabs (i.e. highΨ) and were rated
as “fair”. Finally, grid 11, which was classified as “good”, was not
associated with a distinct weak layer.

All grids with a median value of Ψ for the weak layer larger than
5 kPa were rated as “fair” or “good”, with the exception of grid 3. For
this grid, both the weak layer and the slab had large median Ψ values
and large spread. This grid was performed on a wind affected slope
where large variations in slab and weak layer thickness existed (snow
height varied from 30 cm to 200 cm). Prior to sampling, the slope was
triggered (whumpfed) from a thin spot.

In Fig. 4 the variation of Ψ for the weak layer and the slab layers is
shown for the stability classes “poor”, “fair” and “good” (Npoor=136,
Nfair=134, Ngood=219). Despite the limited number of observations
some trends are apparent.

The variation of Ψ for the weak layer was smaller for slopes
classified as “poor” than for slopes classified as “fair” or “good”. The
largest spread was observed for the group of “fair” slope stability.
Furthermore, the median values of Ψ for the weak layer were smaller
for the slopes classified as “poor” and “fair”, than for the slopes
classified as “good”. For the slab, on the other hand, the spread in Ψ
was similar for all stability classes. However, the median Ψ values for
the slab were lower for the class “poor” than for the classes “fair” and
“good”.

4.2. Spatial analysis of weak layer and slab properties

To quantify the spatial structure of each grid we used the Moran's I
coefficient as well as a geostatistical analysis. In order to estimate the
reliability of the geostatistical analysis we also analysed the above
described sampling design.

4.2.1. Spatial analysis using Moran's I
The Moran's I coefficients, a measure of spatial autocorrelation, for

Ψ for the weak layer and the slab layer are shown for all eleven grids
in Table 3. Spatial structure was identified in 8 out of 11 cases for the
weak layer and in 10 out of 11 cases for the slab layers. The median
Moran's I coefficient was slightly larger for the slab (I=0.24) than for
the weak layer (I=0.18), suggesting that slab layers were slightly
more clustered than weak layers.

4.2.2. Geostatistical analysis
Fig. 5 shows the variation of simulated ranges for the three

generated ranges of 2 m, 5 m and 8 m sampled with the sampling

Table 1
Classification of study slopes into either “poor”, “fair” or “good” slope stability. Slope
stability is based on profile classification according to Schweizer and Wiesinger (2001)
(1: very poor, 2: poor, 3: fair, 4: good, 5: very good) and the median point stability
(MPS) (median CT score ≤13) or on the presence of any signs of instability.

Profile classification MPS Signs Estimated slope stability

1, 2 ≤13 and Present Poor
3 ≤13 or Present Fair
3, 4, 5 N13 and Absent Good

Table 2
Summary statistics for the eleven grids. Rutschblock score (RB, scores given in bold
indicate a whole block release), PC the profile classification into five stability classes (1:
“very poor” to 5: “very good”) according to Schweizer and Wiesinger (2001), the
median point stability (MPS) based on CT score, presence (1) or absence (0) of signs of
instability, and estimated slope stability are given. Furthermore, the median and the
semi-interquartile range (SIQR) of Ψ for the weak layer and the slab layers are shown.

Grid Weak layer Ψ Slab layers Ψ

No RB PC MPS Instability Slope
stability
estimate

Median SIQR Median SIQR

kPa kPa kPa kPa

1 2 2 10.5 1 Poor 1.6 0.9 3.5 1.4
2 2 1 11 1 Poor 5.1 2.5 7.7 3.7
3 3 2 12 1 Poor 17.2 8.7 59.2 22.9
4 5 3 11.5 1 Fair 53.0 11.0 67.6 14.7
5 5 3 12 0 Fair 1.5 1.6 53.3 7.6
6 4 3 12.5 1 Fair 3.1 2.0 28.0 7.7
7 5 3 13.5 0 Good 20.7 5.1 24.1 4.2
8 4 3 14.5 0 Good 12.1 3.5 30.3 6.9
9 6 4 22.5 0 Good 48.9 12.8 92.4 20.1
10 3 3 14 0 Good 7.9 2.7 42.1 6.3
11 4 4 19 0 Good 2.5 0.4 2.1 0.3
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design used in this study. The median, mean and the standard errors
of the simulated ranges are given in Table 4 as well as the 95%
confidence interval. The differences between the mean simulated
range and the generated range varied from 1.4 m to 2.4 m, while the
deviation from the median of the simulated ranges was always
smaller than 1 m. The largest standard error (±0.7 m) was observed
for the generated 2 m range, the smallest standard error (±0.3 m) for
the 5 m range. Values for the estimated range that were far beyond
the extent (5 out of 300) were discarded for the calculation of the
mean and standard error.

The results of the geostatistical analysis for the parameterΨ for the
weak layer and the slab layers are shown in Table 5. In 3 out of 11 grids
the range for the weak layer Ψ after trend removal was larger than
10 m (unbounded variogram) (Fig. 6). For one grid a pure nugget
variogram was found. The remaining seven grids showed ranges
between 2 m and 8 m, with a median range of 4 m. For the slab layer
Ψ four grids showed unbounded and one a pure nugget variogram.
The six remaining grids showed ranges between 2 m and 6 m
(median: 3 m). The median total sill was smaller for the weak layers
than for the slab layers. The median correlation coefficient r2 was
larger for the slab layers than for the weak layers.

5. Discussion

Assessing snow slope stability (or avalanche release probability) –
by either extrapolating from a single point measurement or from

many spatially distributed measurements – is of primary interest for
avalanche forecasting. Our dataset contains only eleven grids, which
proved to be insufficient to draw any firm conclusions based on a
statistical analysis. Furthermore, our study is limited by (a) the fact
that stability cannot readily be measured (but at best extrapolated)
and (b) by safety concerns for the field crew which limits sampling to
days when the avalanche conditions are not very unstable. Really
unstable conditions are only found when an avalanche is triggered on
the study slope. Otherwise, various degrees of stability can be found,
but the differences between those might be too small for reliable
discrimination. Therefore, it is not surprising that in our dataset no
clear patterns of spatial variations with regard to slope stability can be
seen since there are only very few measurements in the unstable
range.

Apart from spatial variability, measurement uncertainties also
introduced variations in the measurements. To maximize the number
of measurements available for analysis, we manually identified the
weak layer. The manual detection of weak layers is subjective and if
the weak layers or interfaces are not very distinct this introduces
some uncertainty, which cannot be quantified. Other sources of
uncertainty stem from the stability tests and from the stability
classification. For instance, a threshold value CT≤13 was used as a
criterion for slope stability classification, i.e. the uncertainty of the

Fig. 4. Distributions of parameterΨ for the weak layer (yellow) and the slab layers (blue) for the grids rated as either “poor”, “fair” or “good”. (Npoor=136, Nfair=134, Ngood=219).
Boxes span the interquartile range. Open circles indicate outliers.

Table 3
Summary of the Moran's I statistics. Given are the estimated slope stability, the Moran's
I coefficient with its corresponding p-value, as well as the presence (1) or absence (0) of
clustering (C) of Ψ.

Grid Weak layer Slab layers

No. Slope stability Moran's I p C Moran's I p C

1 Poor 0.04 0.119 0 0.31 b0.001 1
2 Poor 0.07 0.031 1 0.24 b0.001 1
3 Poor 0.21 b0.001 1 0.3 b0.001 1
4 Fair 0.13 b0.001 1 0.35 b0.001 1
5 Fair 0.03 0.161 0 0.11 0.002 1
6 Fair 0.27 b0.001 1 0.09 0.019 1
7 Good 0.18 b0.001 1 0.13 0.001 1
8 Good 0.23 b0.001 1 0.3 b0.001 1
9 Good 0.37 b0.001 1 0.56 b0.001 1
10 Good 0.04 0.136 0 0.08 0.026 1
11 Good 0.26 b0.001 1 −0.02 0.643 0 Fig. 5. Distribution of simulated ranges for the three generated ranges of 2 m, 5 m and

8 m. Boxes span the interquartile range. Open circles indicate outliers.
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compression test results greatly affects the stability classification, in
particular if the median score is close to the threshold value.

The non-spatial analysis suggests that the median values of Ψ for
the weak layer and the slab layer increased with increasing slope
stability (Fig. 4). The spread in Ψ for the slab layers showed no trend.
A small spread would be related to rather uniform slab layers whereas
a large spread would indicate variable slab layers. The median values
of Ψ for the weak layer were rather larger for the stability class of
“good” than for the classes of “poor” and “fair”. Small values of Ψ
indicate poorly bonded grains, i.e. fracture initiation should be
possible. The largest spread was observed for the class of “fair”
stability. However, a small median Ψ was also related to this class
indicating areas of poorly bonded grains. These areas might be larger
than the critical length required for fracture propagation.

Fig. 4 suggests that the stability classification with a threshold
value of Ψ=5 kPa reported by Bellaire et al. (2009) is not suited for
classifying slopes in regard to stability. In fact, applying this threshold
and grouping the slope stability classes “fair” and “good”, an
unweighted average accuracy of 58% results. As the datasets (spatial
vs. point measurements) and stability classification (slope estimate
vs. Rutschblock) are different, a direct comparison with the results of
Bellaire et al. (2009) is not meaningful. In the present study we
attempted to discriminate between three stability classes (“poor”,
“fair” and “good”) instead of two. This is obviously a more difficult
classification problem; in particular the middle class (“fair”) is not
distinct enough. In addition, when classifying slopes the spatial
stability measurements were considered in the present study. For the
future, we intend to develop an improved classification schemewhich
should include a combination of weak layer and slab layer properties
and possibly some information on their spatial structure.

The Moran's I statistics suggest that the slab layer Ψ was more
clustered than the weak layer Ψ. For most of the grids, correlation
length between 2 m and 8 m were identified for the weak layer and
the slab layer Ψ. With our sampling design ranges below 10 m can be
identified with an accuracy of about 2 m (Fig. 5), but the exact
correlation length cannot be determined. Slope scale trends were
observed for theweak and slab layerΨ; trendswere larger for the slab

layer Ψ (see r2 in Table 4). This supports the results of the Moran's I
statistics and might be related to the fact that different processes at
different scales can cause slope scale variations. For example, wind
might affect the slab and cause slope scale variations, whereas the
weak layer will be more influenced by metamorphic processes.
Further slopes need to be investigated to relate possible causes of
variability to the type and amount of variability.

The non-spatial statistics showed that slab layers had lower
relative spread, though the absolute spread was higher. The mean Ψ
tended to be larger for the slab layers and the slab layers were more
clustered than the weak layer. These results contradict the findings by
Kronholm et al. (2004) who concluded that slabs may be more
variable than weak layers. The reasons for this discrepancy are
presently unclear.

The observed lack of correlation between spatial variations and
slope stability might be explained by the hypothesis that a spatial
structure is only relevant when there are variations between unstable
and stable conditions, i.e. stable and unstable areas exist on the same
slope. Otherwise, the presence of a spatial structure with only
variations within the unstable or stable range still results in an overall
instability or stability, respectively. Variations and their length scale
seem irrelevant if they occur fully within the stable or unstable range.
Spatial variability, and especially the correlation length, would only
become crucial if variations occur across stability classes. Considering
the threshold of 5 kPa for the weak layer introduced by Bellaire et al.
(2009) the investigated weak layers showed primarily variations in
either the stable or the unstable range. However, only one of the
slopes (grid 3) with a potentially unstable weak layer was triggered
during investigation. This suggests that besides the weak layer
characteristics, the slab layer properties need to be taken into account
as well for slope stability classification.

In summary, combining the results of the spatial and non-spatial
analysis suggests that some amount of spatial variability always
exists. We hypothesize that variations and their length scales are only
relevant when the variations are around the threshold between rather
unstable and rather stable conditions. Otherwise, it seems that the
slope is either stable or unstable, independent of spatial variations,
and point stability measurements might well be indicative — as
exemplified by the average classification accuracy of stability tests
(70–90%) (e.g. Schweizer and Jamieson, 2010; Schweizer and Bellaire,
2010). In other words, spatial variations might be most critical for
slope stability evaluation when stability is “fair”. This conjecture is in
agreement with the view that incidental skier-triggering is most
critical in situations of intermediate or fair stability with substantial
variability in snowpack properties (Schweizer, 2004).

We also analysed (not shown) the spatial structure of the
compression tests (initialization) and point stability derived from
the algorithm introduced by Bellaire et al. (2009). No structures were

Table 4
Summary statistics for the sampling design test. Given are the generated range, the
median of the simulated range, the mean of the simulated range as well as the standard
error of the mean (SE) and the 2.5% and 97.5% quantiles.

Generated range Median Mean SE Q2.5 Q97.5

m m m m m m

2 2.9 4.4 0.7 1.4 13.3
5 5.7 6.4 0.3 3.3 14.8
8 8.5 9.8 0.5 4.8 16.5

Table 5
Results of the geostatistical analysis. Given are the range R, the sill σ2, the nugget τ as well as theweighted sum of squares (WSS) as ameasure of fit quality for all 11 grids. Also shown
is the correlation coefficient r2 of the trend analysis. The second column contains the estimated slope stability. No range is given (–) if a pure nugget variogram was found.

Grid Weak layer Slab layers

No. Slope
stability

R σ2 τ WSS r2 R σ2 τ WSS r2

m kPa kPa kPa m kPa kPa kPa

1 Poor N10 2.8×103 1.8 6.2×102 0.19 2 1.4 0 6.7×101 0.67
2 Poor – 0 17 9.5×105 0.04 3 30 0.9 4.5×104 0.04
3 Poor 2 63 29 3.8×105 0.33 6 3.2×102 56 5.3×106 0.44
4 Fair N10 3.0×105 1.8×102 1.3×107 0.18 N10 2.3×105 0 1.6×107 0.63
5 Fair 4 5.5 4.9 2.3×103 0.09 6 1.7×102 0 5.2×105 0.29
6 Fair 5 7.6 2.2 1.4×104 0.21 3 92 14 5.3×105 0.20
7 Good 6 85 0 3.9×105 0.14 – 0 34 4.8×103 0.25
8 Good N10 4.8×104 0 6.3×104 0.02 N10 6.7×104 4.6 1.7×105 0.03
9 Good 8 2.7×102 50 2.9×106 0.35 N10 3.0×103 0.0 4.4×107 0.49
10 Good 8 28 8.1 2.8×103 0.16 N10 7.2×104 35 1.3×106 0.17
11 Good 3 0.8 0 1.4×102 0.35 3 1.4 0 1.3×103 0.04
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identified, which allowed one to distinguish between slopes of “poor”,
“fair” or “good” stability. In addition, as described above the point
stability values (compression tests) are prone to errors. Point stability
values should at best be considered as an index of failure initiation. In
other words, it seems questionable whether spatially distributed
point stability observations can be used to estimate slope stability. At
least, low variability of the compression test scores within a grid was
related to rather poor slope stability, which might favour fracture
initiation as well as propagation. Whereas initiation is limited to a
small area, the scale of propagation is much larger.

There is no doubt that the properties of the mountain snowpack are
spatially variable. However, measuring, analysing and interpreting spatial
distributedmeasurements remains challengingwhich is why the present
study, as well as many previous studies, is partly inconclusive.

6. Conclusions

We analysed spatial measurements of penetration resistance
performed using a partly randomized novel grid design on eleven

slopes near Davos, Switzerland. A micro-structural parameter Ψ,
which describes the structure of snow layers (related to micro-
structural strength), was analysed non-spatially as well as spatially.
The spatial measurements of Ψ were related to an estimate of slope
stability.

The non-spatial analysis showed that themedian and spread of the
parameter Ψ for the weak layer and the slab layers can be very
different. These differences could partly be related to the observed
slope stability. For example, on rather stable slopes higher values ofΨ
for the weak layer and the slab layers were observed compared to
values of Ψ on slopes rated as “poor”. Whereas the spread for slab
layers did not show a trend, the spread for the weak layer tended to
increase with increasing slope stability, but the apparent increase was
statistically not significant.

The geostatistical analysis showed that in more than half of the
cases a range of a fewmeters was identified for theweak layer and the
slab layers. The Moran's I index suggests that slab layers were more
clustered than weak layers; they also showedmore often a slope scale
trend. The weak layers showed generally lower values ofΨ and lower

Fig. 6. Exemplary variograms for the parameter Ψ for grids 1, 2 and 6, for the weak layer (left) and the slab layers (right).
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absolute (but higher relative) dispersion than the slab layers. We
were unable to relate a certain correlation length to slope stability and
therefore the effect of length scale on slope stability remains
unknown for the time being.

Our results should be interpreted as a preliminary attempt
towards a better understanding of the complex interaction of snow
cover properties – including their spatial variations – with slope
stability. Whereas, some of the apparent trends seem to be plausible
in comparison to previous hypotheses on how spatial variations of
weak layer and slab properties might affect avalanche release
probability, our study has to be considered as inconclusive with
regard to establishing a relation between spatial variations and
avalanche release probability. However, our measurements provide
new insight into the nature of spatial variations at the slope scale and
point out the difficulties that need to be tackled in order to clarify the
effect of spatial variations on avalanche release probability. In
particular, the definition of slope stability in the course of field
studies seems problematic.
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