
Floods
Main menu
Intense, prolonged rainfall can lead to flooding. There are other factors, however, such as snowmelt, that play a significant role in causing flooding. High snowmelt rates combined with heavy rainfall can give rise to critical flood situations.
Flooding is when the water level or discharge in a body of water reaches or exceeds a certain threshold. Mountain torrents, rivers and lakes are no longer able to absorb the volume of water and burst their banks. When critical levels are reached, factors such as terrain and the permanent and temporary protective measures in place determine the severity of a flood.
We study snow in terms of its function in the hydrological cycle and run an operational snow-hydrological service (OSHD). One of the key questions in snow hydrology is how much snow is present in a research site and when and how much of that snow will run off as snowmelt. As the snow thaws, the extent, height and thickness of the snowpack changes. The OSHD continuously monitors the spatial and temporal distribution of snow water resources in Switzerland, and in doing so helps to improve hydrological forecasting and long-term water resource management.
FURTHER INFORMATION
Services and products
Natural hazards portal
Swiss flood and landslide damage database
WSL-database of natural hazard fatalities in Switzerland
Publications
Schwerpunkt aus dem WSL-Magazin Diagonal, 1/14: Wirkungsvolle Prävention setzt Wissen voraus. Wie geht die Forschung mit den komplexen Herausforderungen im Risikomanagement um?
Lu, G.; Caviezel, A.; Christen, M.; Demmel, S.E.; Ringenbach, A.; Bühler, Y.; Dinneen, C.E.; Gerber, W.; Bartelt, P., 2019: Modelling rockfall impact with scarring in compactable soils. Landslides, 16: 2353-2367. doi: 10.1007/s10346-019-01238-z
Volkwein, A.; Gerber, W.; Klette, J.; Spescha, G., 2019: Review of approval of flexible rockfall protection systems according to ETAG 027. Geosciences, 9, 1: 49 (17 pp.). doi: 10.3390/geosciences9010049
Caviezel, A.; Gerber, W., 2018: Brief communication: measuring rock decelerations and rotation changes during short-duration ground impacts. Natural Hazards and Earth System Sciences, 18, 11: 3145-3151. doi: 10.5194/nhess-18-3145-2018
Von Boetticher, A.; Volkwein, A., 2018: Numerical modelling of chain-link steel wire nets with discrete elements. Canadian Geotechnical Journal, 99: 398-419. doi: 10.1139/cgj-2017-0540
Schimmel, A.; Hübl, J.; McArdell, B.; Walter, F., 2018: Automatic identification of alpine mass movements by a combination of seismic and infrasound sensors. Sensors, 18, 5: 1658 (19 pp.). doi: 10.3390/s18051658
Volkwein, A.; Brügger, L.; Gees, F.; Gerber, W.; Krummenacher, B.; Kummer, P.; Lardon, J.; Sutter, T., 2018: Repetitive rockfall trajectory testing. Geosciences, 8, 3: 88 (27 pp.). doi: 10.3390/geosciences8030088
Caviezel, A.; Schaffner, M.; Cavigelli, L.; Niklaus, P.; Bühler, Y.; Bartelt, P.; Magno, M.; Benini, L., 2018: Design and evaluation of a low-power sensor device for induced rockfall experiments. IEEE Transactions on Instrumentation and Measurement, 67, 4: 767-779. doi: 10.1109/TIM.2017.2770799
Niklaus, P.; Birchler, T.; Aebi, T.; Schaffner, M.; Cavigelli, L.; Caviezel, A.; Magno, M.; Benini, L., 2017: StoneNode: a low-power sensor device for induced rockfall experiments. In: 2017: 2017 IEEE sensors applications symposium (SAS). 2017 IEEE sensors applications symposium (SAS), Glassboro, NJ, USA. 16807856 (6 pp.). doi: 10.1109/SAS.2017.7894081
Wendeler, C.; Bühler, Y.; Bartelt, P.; Glover, J., 2017: Application of three-dimensional rockfall modelling to rock face engineering. Anwendung eines 3D-Steinschlag Modells für Felssicherungen. Geomechanics and Tunnelling, 10, 1: 74-80. doi: 10.1002/geot.201600073
Sättele, M.; Krautblatter, M.; Bründl, M.; Straub, D., 2016: Forecasting rock slope failure: how reliable and effective are warning systems?. Landslides, 13, 4: 737-750. doi: 10.1007/s10346-015-0605-2
Volkwein, A.; Kummer, P.; Bitnel, H.; Campana, L., 2016: Load measurement on foundations of rockfall protection systems. Sensors, 16, 2: 174 (19 pp.). doi: 10.3390/s16020174
Volkwein, A.; Baumann, R.; Rickli, C.; Wendeler, C., 2015: Standardization for flexible debris retention barriers. In: Lollino, G.; Giordan, D.; Crosta, G.B.; Corominas, J.; Azzam, R.; Wasowski, J.; Sciarra, N. (eds), 2015: Engineering geology for society and territory - volume 2. Landslide processes. Cham, Springer. 193-196. doi: 10.1007/978-3-319-09057-3_25
Glover, J.; Bartelt, P.; Christen, M.; Gerber, W., 2015: Rockfall-simulation with irregular rock blocks. In: Lollino, G.; Giordan, D.; Crosta, G.B.; Corominas, J.; Azzam, R.; Wasowski, J.; Sciarra, N. (eds), 2015: Engineering geology for society and territory - volume 2. Landslide process. Cham, Springer. 1729-1733. doi: 10.1007/978-3-319-09057-3_306
Stähli, M.; Sättele, M.; Huggel, C.; McArdell, B.W.; Lehmann, P.; Van Herwijnen, A.; Berne, A.; Schleiss, M.; Ferrari, A.; Kos, A.; Or, D.; Springman, S.M., 2015: Monitoring and prediction in early warning systems for rapid mass movements. Natural Hazards and Earth System Sciences, 15, 4: 905-917. doi: 10.5194/nhess-15-905-2015
Bebi, P.; Putallaz, J.; Fankhauser, M.; Schmid, U.; Schwitter, R.; Gerber, W., 2015: Die Schutzfunktion in Windwurfflächen. Schweizerische Zeitschrift für Forstwesen, 166, 3: 168-176. doi: 10.3188/szf.2015.0168
Buzzi, O.; Leonarduzzi, E.; Krummenacher, B.; Volkwein, A.; Giacomini, A., 2015: Performance of high strength rock fall meshes: effect of block size and mesh geometry. Rock Mechanics and Rock Engineering, 48, 3: 1221-1231. doi: 10.1007/s00603-014-0640-7
Stähli, M.; Graf, C.; Scheidl, C.; Wyss, C.R.; Volkwein, A., 2015: Experimentelle Erkundung von Wildbächen, Murgängen, Hangrutschungen und Steinschlag: aktuelle Beispiele der WSL. Geographica Helvetica, 70, 1: 1-9. doi: 10.5194/gh-70-1-2015
Leine, R.I.; Schweizer, A.; Christen, M.; Glover, J.; Bartelt, P.; Gerber, W., 2014: Simulation of rockfall trajectories with consideration of rock shape. Multibody System Dynamics, 32, 2: 241-271. doi: 10.1007/s11044-013-9393-4
Volkwein, A.; Klette, J., 2014: Semi-automatic determination of rockfall trajectories. Sensors, 14, 10: 18187-18210. doi: 10.3390/s141018187
Volkwein, A.; Labiouse, V.; Schellenberg, K., 2011: Summary on the NHESS Special Issue "Rockfall protection – from hazard identification to mitigation measures". Natural Hazards and Earth System Sciences, 11, 10: 2727-2728. doi: 10.5194/nhess-11-2727-2011
Volkwein, A.; Schellenberg, K.; Labiouse, V.; Agliardi, F.; Berger, F.; Bourrier, F.; Dorren, L.K.A.; Gerber, W.; Jaboyedoff, M., 2011: Rockfall characterisation and structural protection – a review. Natural Hazards and Earth System Sciences, 11, 9: 2617-2651. doi: 10.5194/nhess-11-2617-2011
Volkwein, A.; Vogel, A.; Gerber, W.; Roth, A., 2011: Brief communication "Tree impacts into a flexible rockfall protection system". Natural Hazards and Earth System Sciences, 11, 11: 3047-3051. doi: 10.5194/nhess-11-3047-2011
Volkwein, A.; Roth, A.; Gerber, W.; Vogel, A., 2009: Flexible rockfall barriers subjected to extreme loads. Structural Engineering International, 19, 3: 327-332. doi: 10.2749/101686609788957900
Lundström, T.; Jonsson, M.J.; Volkwein, A.; Stoffel, M., 2009: Reactions and energy absorption of trees subject to rockfall: a detailed assessment using a new experimental method. Tree Physiology, 29, 3: 345-359. doi: 10.1093/treephys/tpn030